Trigonometry: Solving for a Side

Trigonometry: Solving for a Side

The word ‘trigonometry’ is derived from the Greek words ‘tri’(meaning three), ‘gon’ (meaning sides) and ‘metron’ (meaning measure).
Trigonometry is the study of relationships between the sides and angles of a triangle.

Applications of trigonometry:
There are an enormous number of uses of trigonometry and trigonometric functions.

  1. Early astronomers used it to find out the distances of the stars and planets from the Earth.
  2. In geography to measure distances between landmarks, and in satellite navigation systems.
  3. Even today, most of the technologically advanced methods used in Engineering and Physical Sciences are based on trigonometrical concepts.
  4. The sine and cosine functions are fundamental to the theory of periodic functions such as those that describe sound and light waves.

Basic Trigonometry Rules:

  1. These formulas ONLY work in a right triangle.
  2. The hypotenuse is always across from the right angle.
  3. Questions usually ask for an answer to the nearest units.
  4. You will need a scientific or graphing calculator.

Using Trigonometric Functions to Find a Missing Side

How to set up and solve a trigonometry problem:

Set up the diagram:

  1. Draw a diagram depicting the situation, if one is not given.
  2. Place the angle degrees INSIDE the triangle.
  3. Imagine standing at the reference angle.
  4. LABEL the triangle with o, h, and a.
    o – opposite side (the side across from you)
    h – hypotenuse (across from the right angle)
    a – adjacent side (the leftover side)
  5. “Pair Up” the values.
    The h pairs with the 25.
    The o pairs with the x.
    The a stands alone, which means the a is not involved in the solution to this problem. Cross it out!
    This problem deals with o and h.
    Trigonometry Solving for a Side 1a

Set up the formula:

  1. Since this problem deals with o and h, we use the sine function since it also deals with o and h.
  2. Replace A with the angle degrees.
  3. Replace o and h with their companion terms.
  4. Use your scientific/graphing calculator to determine the value of sin 42º. (On most graphing calculators, set the mode to degree and press the sin key followed by 42. Most scientific calculators will reverse this order: press 42 first, followed by the sin key.
  5. Solve the equation algebraically. In this problem, cross multiply and solve for x. (When x is on top, you multiply to get the answer. When x is on the bottom, you will divide to get the answer – see example below.)
  6. Round answer to desired value.
    Trigonometry Solving for a Side 2

Example 2: IIn right triangle ABC, ∠C is the right angle, BC = 17 and angle B = 35º.
Find BA to the nearest tenth.
Solution:
Set up the diagram and the formula in the same manner as was done in
Example 1. You should arrive at the drawing and the formula shown here.

Trigonometry Solving for a Side 3

Hint: If you are having a problem solving the equation algebraically, remember that when x is on the bottom, you must divide to arrive at your answer. The division is always “divide BY the trig value decimal”.

Hint: Be sure your answer MAKES SENSE!!! The hypotenuse is always the largest side in a right triangle. So, our answer of 26.50 makes sense – it is bigger than the leg of 20.

Trigonometric Identities

Trigonometric Identities

(1) \(\tan \theta =\frac{\sin \theta }{\cos \theta }\text{ (linear)}\)
Trigonometric Identities 1
Trigonometric Identities 2

Conditional trigonometrical identities

We have certain trigonometric identities.
Like sin2 θ + cos2 θ = 1 and 1 + tan2 θ = sec2 θ etc.
Such identities are identities in the sense that they hold for all value of the angles which satisfy the given condition among them and they are called conditional identities.
Trigonometric Identities 3
Trigonometric Identities 4
Trigonometric Identities 5

Trigonometric Identities With Examples

Example 1:    Prove the following trigonometric identities:
(i) (1 – sin2θ) sec2θ = 1
(ii) cos2θ (1 + tan2θ) = 1
Sol.    (i)  We have,
LHS = (1 – sin2θ) sec2θ
= cos2θ sec2θ         [∵ 1 – sin2θ = cos2θ]
\( ={{\cos }^{2}}\theta \left( \frac{1}{{{\cos }^{2}}\theta } \right)\left[ \because \ \ \sec \theta =\frac{1}{\cos \theta } \right]\)
= 1 = RHS
(ii)  We have,
LHS = cos2θ (1 + tan2θ)
= cos2θ sec2θ         [∵ 1 + tan2θ = sec2θ]
\( ={{\cos }^{2}}\theta \left( \frac{1}{{{\cos }^{2}}\theta } \right)\left[ \because \ \ \sec \theta =\frac{1}{\cos \theta } \right]\)
= 1 = RHS

Example 2:    Prove the following trigonometric identities:
\( (\text{i})\text{ }\frac{\sin \theta }{1-\cos \theta }=\text{cosec}\theta +\cot \theta \)
\( (\text{ii})\text{ }\frac{\tan \theta +\sin \theta }{\tan \theta -\sin \theta }=\frac{\sec \theta +1}{\sec \theta -1} \)
Sol.    (i)  We have,
\( LHS=\frac{\sin \theta }{(1-\cos \theta )}\times \frac{(1+\cos \theta )}{(1+\cos \theta )} \)
[Multiplying numerator and denominator by (1 + cosθ)]
\( =\frac{sin\theta (1+cos\theta )}{1co{{s}^{2}}\theta }=\frac{\sin \theta (1+\cos \theta )}{{{\sin }^{2}}\theta } \)
[∵ 1 – cos2θ = sin2θ]
\( =\frac{1+\cos \theta }{\sin \theta }=\frac{1}{\sin \theta }+\frac{\cos \theta }{\sin \theta } \)
= cosecθ + cotθ = RHS
\( \left[ \because \ \ \frac{1}{\sin \theta }=\cos ec\theta \,\,and\,\frac{\cos \theta }{\sin \theta }=\cot \theta \right] \)
(ii)  We have,
\( LHS=\frac{\tan \theta +\sin \theta }{\tan \theta -\sin \theta } \)
\( \frac{\frac{\sin \theta }{\cos \theta }+\sin \theta }{\frac{\sin \theta }{\cos \theta }-\sin \theta }=\frac{\sin \theta \left( \frac{1}{\cos \theta }+1 \right)}{\sin \theta \left( \frac{1}{\cos \theta }-1 \right)}  \)
\( \frac{\frac{1}{\cos \theta }+1}{\frac{1}{\cos \theta }-1}=\frac{\sec \theta +1}{\sec \theta -1}=RHS \)

Example 3:    Prove the following identities:
(i) (sinθ + cosecθ)2 + (cosθ + secθ)2 = 7 + tan2θ + cot2θ
(ii) (sinθ + secθ)2 + (cosθ + cosecθ)2 = (1 + secθ cosecθ)2
(iii) sec4θ– sec2θ = tan4θ + tan2θ
Sol.    (i) We have,
LHS = (sinθ + cosecθ)2 + (cosθ + secθ)2
= (sin2θ + cosec2θ + 2sinθ cosecθ) (cos2θ + sec2θ + 2cosθ secθ)
\(\left( {{\sin }^{2}}\theta +\cos e{{c}^{2}}\theta +2\sin \theta .\frac{1}{\sin \theta } \right)+\left( {{\cos }^{2}}\theta +{{\sec }^{2}}\theta +2\cos \theta .\frac{1}{\cos \theta } \right) \)
= (sin2θ + cosec2θ + 2) + (cos2θ + sec2θ + 2)
= sin2θ + cos2θ + cosec2θ + sec2θ + 4
= 1 + (1 + cot2θ) + (1 + tan2θ) + 4
[∵ cosec2θ = 1 + cot2θ, sec2θ = 1 + tan2θ]
= 7 + tan2θ + cot2θ = RHS.
(ii)  We have,
LHS = (sinθ + secθ)2 + (cosθ + cosecθ)2
\( ={{\left( \sin \theta +\frac{1}{\cos \theta } \right)}^{2}}+{{\left( \cos \theta +\frac{1}{\sin \theta } \right)}^{2}} \)
\( ={{\sin }^{2}}\theta +\frac{1}{{{\cos }^{2}}\theta }+\frac{2\sin \theta }{\cos \theta }+{{\cos }^{2}}\theta +\frac{1}{{{\sin }^{2}}\theta }+\frac{2\cos \theta }{\sin \theta }  \)
\( =({{\sin }^{2}}\theta +{{\cos }^{2}}\theta )+\left( \frac{1}{{{\cos }^{2}}\theta }+\frac{1}{{{\sin }^{2}}\theta } \right)+2\left( \frac{\sin \theta }{\cos \theta }+\frac{\cos \theta }{\sin \theta } \right) \)
\( =({{\sin }^{2}}\theta +{{\cos }^{2}}\theta )+\left( \frac{{{\sin }^{2}}\theta +{{\cos }^{2}}\theta }{{{\sin }^{2}}\theta {{\cos }^{2}}\theta } \right)+\frac{2({{\sin }^{2}}\theta +{{\cos }^{2}}\theta )}{\sin \theta \cos \theta } \)
\( =1+\frac{1}{{{\sin }^{2}}\theta {{\cos }^{2}}\theta }+\frac{2}{\sin \theta \cos \theta }  \)
\( ={{\left( 1+\frac{1}{\sin \theta \cos \theta } \right)}^{2}} \)
= (1 + secθ cosecθ)2 = RHS
(iii)  We have,
LHS = sec4θ– sec2θ
= sec2θ (sec2θ – 1) = (1 + tan2θ) (1 + tan2θ – 1)
[ sec2θ = 1 + tanθ]
= (1 + tan2θ) tan2θ
= tan4θ + tan2θ = RHS

Example 4:    Prove the following identities:
(i) cos44 A – cos2 A = sin4 A – sin2 A
(ii) cot4 A – 1 = cosec4 A – 2cosec2 A
(iii) sin6 A + cos6 A = 1 – 3sin2 A cos2 A.
Sol.(i) We have,
LHS = cos44 A – cos2 A = cos2A (cos2A – 1)
= – cos2 A (1 – cos2 A) = – cos2A sin2A
= –(1 – sin2 A) sin2 A = – sin2 A + sin4 A
= sin4 A – sin2 A = RHS
(ii) We have,
LHS = cot4 A – 1 = (cosec2A – 1)2 – 1
[∵ cot2A = cosec2A –1   ⇒   cot4A = (cosec2A – 1)2]
= cosec4A – 2 cosec2A + 1 – 1
= cosec4 A – 2cosec2 A = RHS
(iii) We have,
LHS = sin6 A + cos6 A = (sin2 A)3 + (cos2 A)3
= (sin2 A + cos2 A) {(sin2 A)2 + (cos2 A)2 – sin2 A cos2 A)}
[∵ a3 + b3 = (a + b) (a2 – ab + b2)]
={(sin2 A)2 + (cos2 A)2 + 2 sin2 A cos2 A – sin2 A cos2 A}
= [(sin2 A + cos2 A)2 – 3 sin2 A cos2 A]
= 1 – 3sin2 A cos2 A = RHS

Example 5:    Prove the following identities:
\( \left( \text{i} \right)\frac{si{{n}^{2}}A}{co{{s}^{2}}A}+\frac{co{{s}^{2}}A}{si{{n}^{2}}A}=\frac{1}{si{{n}^{2}}A\,co{{s}^{2}}A}-2 \)
\( \left( \text{ii} \right)\frac{cosA}{1tanA}+\frac{si{{n}^{2}}A}{sinAcosA}=\sin A\text{ }+\cos A \)
\( \left( \text{iii} \right)\frac{{{(1+sin\,\theta )}^{2}}+{{(1sin\,\theta )}^{2}}}{co{{s}^{2}}\theta }=2\left( \frac{1+si{{n}^{2}}\,\theta }{1-si{{n}^{2}}\,\theta } \right) \)
Sol.    (i) We have,
\( LHS=\frac{si{{n}^{2}}A}{co{{s}^{2}}A}+\frac{co{{s}^{2}}A}{si{{n}^{2}}A}=\frac{si{{n}^{4}}\,A+co{{s}^{2}}A}{si{{n}^{2}}\,Aco{{s}^{2}}A} \)
\( =\frac{{{({{\sin }^{2}}A)}^{2}}+{{({{\cos }^{2}}A)}^{2}}+2{{\sin }^{2}}A{{\cos }^{2}}A-2{{\sin }^{2}}A{{\cos }^{2}}A}{{{\sin }^{2}}A{{\cos }^{2}}A} \)
\( =\frac{{{({{\sin }^{2}}A+{{\cos }^{2}}A)}^{2}}-2{{\sin }^{2}}A{{\cos }^{2}}A}{{{\sin }^{2}}A{{\cos }^{2}}A} \)
\(=\frac{1-2{{\sin }^{2}}A{{\cos }^{2}}A}{{{\sin }^{2}}A{{\cos }^{2}}A} \)
\(=\frac{1}{{{\sin }^{2}}A{{\cos }^{2}}A}-2=RHS\)
(ii) We have,
\( LHS=\frac{\cos A}{1-\tan A}+\frac{{{\sin }^{2}}A}{\sin A-\cos A} \)
\( =\frac{\cos A}{1-\frac{\sin A}{\cos A}}+\frac{{{\sin }^{2}}A}{\sin A-\cos A} \)
\( =\frac{\cos A}{\frac{\cos A-\sin A}{\cos A}}+\frac{{{\sin }^{2}}A}{\sin A-\cos A} \)
\( =\frac{{{\cos }^{2}}A}{\cos A\sin A}+\frac{{{\sin }^{2}}A}{\sin A\cos A} \)
\( =\frac{{{\cos }^{2}}A}{\cos A\sin A}-\frac{{{\sin }^{2}}A}{\cos A\sin A} \)
\( =\frac{{{\cos }^{2}}A-{{\sin }^{2}}A}{\cos A-\sin A} \)
\( =\frac{(\cos A+\sin A)\,(\cos A-\sin A)}{\cos A-\sin A} \)
= cos A + sin A = RHS
(iii) We have,
\( LHS=\frac{{{(1+\sin \theta )}^{2}}+{{(1\sin \theta )}^{2}}}{{{\cos }^{2}}\theta } \)
\( =\frac{(1+2\sin \theta +{{\sin }^{2}}\theta )+(12\sin \theta +{{\sin }^{2}}\theta )}{{{\cos }^{2}}\theta } \)
\( =\frac{2+2{{\sin }^{2}}\theta }{{{\cos }^{2}}\theta }=\frac{2\,(1+{{\sin }^{2}}\theta )}{1-{{\sin }^{2}}\theta }=2\left( \frac{1+{{\sin }^{2}}\theta }{1-{{\sin }^{2}}\theta } \right) \)
= RHS.

Example 6:    Prove the following identities:
(i) 2 (sin6 θ + cos6 θ) –3(sin4 θ + cos4 θ) + 1 = 0
(ii) (sin8 θ – cos8θ) = (sin2 θ – cos2 θ) (1 – 2sin2 θ cos2θ)
Sol.    (i) We have,
LHS = 2 (sin6 θ + cos6 θ) –3(sin4 θ + cos4 θ) + 1
= 2 [(sin2 θ)3 + (cos2θ)3] – [3 (sin2 θ)2 + (cos2 θ)2] + 1
= 2[(sin2 θ + cos2θ) {(sin2θ)2 + (cos2 θ)2 – sin2θ cos2 θ)]} – 3[(sin2 θ)2 + (cos2 θ)2 + 2 sin2 θ cos2 θ –2 sin2 θ cos2 θ] + 1
= 2[(sin2 θ)2 + (cos2 θ)2 + 2 sin2 θ cos2 θ –3 sin2 θ cos2 θ] –3 [(sin2 θ + cos2 θ)2 – 2 sin2 θ cos2 θ] + 1
= 2[(sin2 θ + cos2 θ)2 – 3 sin2 θ cos2 θ] –3 [1 – 2 sin2 θ cos2 θ] + 1
= 2 (1 – 3 sin2θ cos2θ) – 3(1 – 2 sin2θ cos2θ) + 1
= 2 – 6 sin2 θ cos2θ –3 + 6 sin2 θ cos2 θ + 1
= 0 = RHS
(ii) We have,
LHS = (sin8 θ – cos8θ) = (sin4 θ)2 – (cos4 θ)2
= (sin4 θ – cos4 θ) (sin4 θ + cos4 θ)
= (sin2 θ – cos2 θ) (sin2 θ + cos2 θ) (sin4 θ + cos4 θ)
= (sin2 θ – cos2 θ){(sin2 θ)2 + (cos2 θ)2 + 2 sin2 θ cos2 θ – 2 sin2 θ cos2 θ
= (sin2 θ – cos2 θ) {(sin2 θ + cos2 θ)2 – 2sin2 θ cos2 θ}
= (sin2 θ – cos2 θ) (1 – 2sin2 θ cos2θ) = RHS

Example 7:    If (secA + tanA)(secB + tanB)(secC + tanC) = (secA – tanA)(secB – tanB)(secC – tanC)  prove that each of the side is equal to ±1.
We have,
Sol.    (secA + tanA)(secB + tanB)(secC + tanC) = (secA – tanA)(secB – tanB)(secC – tanC)
Multiplying both sides by
(secA – tanA)(secB – tanB)(secC – tanC) we get
(secA + tanA) (secB + tanB) (secC + tanC) (secA – tanA) (secB – tanB) (secC – tanC) = (secA – tanA)2 (secB – tanB)2 (secC – tanC)2
(sec2A – tan2A)(sec2B – tan2B) (sec2C – tan2C) = (secA – tanA)2(secB – tanB)2(secC – tanC)2
1 = [(secA – tanA)(secB – tanB) (secC – tanC)]2
(secA – tanA)(secB – tanB)(secC – tanC) = ±1
Similarly, multiplying both sides by
(secA + tanA)(secB + tanB)(secC + tanC),
we get
(secA + tanA)(secB + tanB)(secC + tanC) = ±1

Example 8:    If tanθ + sinθ = m and tanθ – sinθ = n, show that m2 – n2 =  \(4\sqrt{mn}\).
Sol.   We have,
LHS = m2 – n2 = (tanθ + sinθ)2 – (tanθ – sinθ)2
= 4tanθ sinθ        [∵ (a + b)2 – (a – b)2 = 4ab]
\( =4\sqrt{(\tan \theta +\sin \theta )(\tan \theta \sin \theta )} \)
\( =4\sqrt{{{\tan }^{2}}\theta {{\sin }^{2}}\theta } \)
\( =4\sqrt{\frac{{{\sin }^{2}}\theta }{{{\cos }^{2}}\theta }{{\sin }^{2}}\theta } \\ \)
\( =4\sqrt{\frac{{{\sin }^{2}}\theta {{\sin }^{2}}\theta {{\cos }^{2}}\theta }{{{\cos }^{2}}\theta }} \)
\( =4\sqrt{\frac{{{\sin }^{2}}\theta (1{{\cos }^{2}}\theta )}{{{\cos }^{2}}\theta }}=4\sqrt{\frac{{{\sin }^{4}}\theta }{{{\cos }^{2}}\theta }} \)
\( =\text{ }4\frac{{{\sin }^{2}}\theta }{\cos \theta }=4\sin \theta \frac{\sin \theta }{\cos \theta }=4\sin \theta \tan \theta \)
And, RHS = \(4\sqrt{mn}\)

Example 9:    If cosθ + sinθ = √2 cosθ, show that
cosθ – sinθ = √2 sinθ.
Sol.    We have,
cosθ + sinθ = cosθ
⇒ (cosθ + sinθ)2 = 2 cos2θ
⇒ cos2θ + sin2θ + 2 cosθsinθ = 2 cos2θ
⇒ cos2θ – 2cosθ sinθ = sin2θ
⇒ cos2θ – 2cosθsinθ + sin2θ = 2sin2θ
⇒ (cosθ – sinθ)2 = 2sin2θ
⇒ cosθ – sinθ = √2 sinθ

Example 10:    If sinθ + cosθ = p and secθ + cosecθ = q, show that q(p2 – 1) = 2p
Sol.    We have,
LHS = q(p2 – 1) = (secθ + cosecθ) [(sinθ + cosθ)2 – 1]
\( =\left( \frac{1}{\cos \theta }+\frac{1}{\sin \theta } \right)\{\sin 2\theta +\text{cos}2\theta +2\sin \theta \cos \theta 1\} \)
\( =\left( \frac{\sin \theta +\cos \theta }{\cos \theta \sin \theta } \right)(1+2\sin \theta \cos \theta 1) \)
\( =\left( \frac{\sin \theta +\cos \theta }{\cos \theta \sin \theta } \right)2\sin \theta \cos \ \)
= 2(sinθ + cosθ) = 2p = RHS

Example 11:    If secθ + tanθ = p, show that   \( \frac{{{p}^{2}}-1}{{{p}^{2}}+1}=\sin \theta \)
Sol.     We have,
\( =\frac{{{\sec }^{2}}\theta +{{\tan }^{2}}\theta +2\sec \theta \tan \theta -1}{{{\sec }^{2}}\theta +{{\tan }^{2}}\theta +2\sec \theta \tan \theta +1} \)
\( =\frac{({{\sec }^{2}}\theta -1)+{{\tan }^{2}}\theta +2\sec \theta \tan \theta }{{{\sec }^{2}}\theta +2\sec \theta \tan \theta +(1+{{\tan }^{2}}\theta )} \)
\( =\frac{{{\tan }^{2}}\theta +{{\tan }^{2}}\theta +2\sec \theta \tan \theta }{{{\sec }^{2}}\theta +2\sec \theta \tan \theta +{{\sec }^{2}}\theta } \)
\( =\frac{2{{\tan }^{2}}\theta +2\tan \theta \sec \theta }{2{{\sec }^{2}}\theta +2\sec \theta \tan \theta } \)
\( =\frac{2\tan \theta \,(\tan \theta +\sec \theta )}{2\sec \theta (\sec \theta +\tan \theta )} \\ \)
\( =\frac{\tan \theta }{\sec \theta }=\frac{\sin \theta }{\cos \theta \sec \theta } \)
= sinθ = RHS

Example 12:    \(If\frac{\cos \alpha }{\cos \beta }=m\text{ and }\frac{\cos \alpha }{\sin \beta }=n \)  show that   (m2 + n2) cos2 β = n2.
Sol.    LHS = (m2 + n2) cos2 β
\( =\left( \frac{{{\cos }^{2}}\alpha }{{{\cos }^{2}}\beta }+\frac{{{\cos }^{2}}\alpha }{{{\sin }^{2}}\beta } \right)\,{{\cos }^{2}}\beta \text{ }\left[ \because \ \ m=\frac{\cos \alpha }{\cos \beta }\,\,and\,\,n=\frac{\cos \alpha }{\sin \beta } \right] \)
\( =\left( \frac{{{\cos }^{2}}\alpha {{\sin }^{2}}\beta +{{\cos }^{2}}\alpha {{\cos }^{2}}\beta }{{{\cos }^{2}}\beta {{\sin }^{2}}\beta } \right){{\cos }^{2}}\beta \)
\( ={{\cos }^{2}}\alpha \left( \frac{1}{{{\cos }^{2}}\beta {{\sin }^{2}}\beta } \right){{\cos }^{2}}\beta \\ \)
\(=\frac{{{\cos }^{2}}\alpha }{{{\sin }^{2}}\beta }={{\left( \frac{\cos \alpha }{\sin \beta } \right)}^{2}} \)
= n2 = RHS

Example 13:    If acosθ + bsinθ = m and asinθ – bcosθ = n, prove that a2 + b2 = m2 + n2.
Sol.    We have,
RHS = m2 + n2
= (acosθ + bsinθ)2 + (asinθ – bcosθ)2
= (a2cos2θ + b2sin2θ + 2ab cosθsinθ) + (a2 sin2θ + b2cos2θ – 2ab sinθcosθ)
= a2(cos2θ + sin2θ) + b2(sin2θ + cos2θ)
= a2 + b2 = LHS.

Example 14:    If acosθ – bsinθ = c, prove that asinθ + bcosθ = \(\pm \sqrt{{{a}^{2}}+{{b}^{2}}-{{c}^{2}}} \)
Sol.    We have,
(acosθ – bsinθ)2 + (asinθ + bcosθ)2
= (a2cos2θ + b2sin2θ – 2ab sinθcosθ) + (a2sin2θ + b2cos2θ + 2absinθcosθ)
= a2(cos2θ + sin2θ) + b2(sin2θ + cos2θ)
= a2 + b2
⇒ c2 + (asinθ + bcosθ)2 = a2 + b2        [∵  acosθ – bsinθ = c]
⇒ (asinθ + bcosθ)2 = a2 + b2 – c2
⇒ asinθ + bcosθ = \(\pm \sqrt{{{a}^{2}}+{{b}^{2}}-{{c}^{2}}} \)

Example 15:    Prove that:
(1 – sinθ + cosθ)2 = 2(1 + cosθ)(1 – sinθ)
Sol.    (1 – sinθ + cosθ)2
= 1 + sin2θ + cos2θ – 2sinθ + 2cosθ – 2sinθcosθ
= 2 – 2sinθ + 2cosθ – 2sinθcosθ
= 2 (1 – sinθ) + 2 cosθ (1 – sinθ)
= 2(1 – sinθ)(1 + cosθ) = RHS

Example 16:    If sinθ + sin2θ = 1, prove that cos2θ + cos4θ = 1.
Sol.    We have,
sinθ + sin2θ = 1
⇒  sinθ = 1 – sin2θ
⇒  sinθ = cos2θ
Now, cos2θ + cos4θ = cos2θ + (cos2θ)2
= cos2θ + sin2θ = 1

Example 17:    Prove that
\( \frac{\sin \theta -\cos \theta }{\sin \theta +\cos \theta }+\frac{\sin \theta +\cos \theta }{\sin \theta -\cos \theta }=\frac{2}{2{{\sin }^{2}}\theta -1} \)
Sol.    \( LHS=\frac{\sin \theta -\cos \theta }{\sin \theta +\cos \theta }+\frac{\sin \theta +\cos \theta }{\sin \theta -\cos \theta } \)
\( =\frac{{{(\sin \theta -\cos \theta )}^{2}}+{{(\sin \theta +\cos \theta )}^{2}}}{(\sin \theta +\cos \theta )(\sin \theta -\cos \theta )} \)
\( =\frac{2({{\sin }^{2}}\theta +{{\cos }^{2}}\theta )}{{{\sin }^{2}}\theta -{{\cos }^{2}}\theta } \)
\( =\frac{2}{{{\sin }^{2}}\theta -(1-{{\sin }^{2}}\theta )} \)
\( =\frac{2}{(2{{\sin }^{2}}\theta -1)}=RHS. \)

Example 18:     Express the ratios cos A, tan A and sec A in terms of sin A.
Sol.    Since cos2A + sin2A = 1, therefore,
cos2A = 1 – sin2A, i.e., cos A = \(\pm \sqrt{1-{{\sin }^{2}}A} \)
This gives
cos A = \(\sqrt{1-{{\sin }^{2}}A} \)   (Why ?)
Hence,
\( \tan A=\frac{\sin A}{\cos A}=\frac{\sin A}{\sqrt{1-{{\sin }^{2}}A}}\text{ and} \)
\( \sec A=\frac{1}{\cos A}=\frac{1}{\sqrt{1-{{\sin }^{2}}A}} \)

Example 19:     Prove that   \( \frac{\sin \theta -\cos \theta +1}{\sin \theta +\cos \theta -1}=\frac{1}{\sec \theta -\tan \theta } \)      using the identity sec2θ = 1 + tan2θ.
\( LHS=\frac{\sin \theta -\cos \theta +1}{\sin \theta +\cos \theta -1}=\frac{\tan \theta -1+\sec \theta }{\tan \theta +1-\sec \theta } \)
\( =\frac{(\tan \theta +\sec \theta )-1}{(\tan \theta -\sec \theta )+1} \)
\( =\frac{\{(\tan \theta +\sec \theta )-1\}\,(\tan \theta -\sec \theta )}{\{(\tan \theta -\sec \theta )+1\}\,(\tan \theta -\sec \theta )} \)
\( =\frac{({{\tan }^{2}}\theta -{{\sec }^{2}}\theta )-(\tan \theta -\sec \theta )}{\{\tan \theta -\sec \theta +1\}\,(\tan \theta -\sec \theta )} \)
\( =\frac{-1-\tan \theta +\sec \theta }{(\tan \theta -\sec \theta +1)\,(\tan \theta -\sec \theta )} \)
\( =\frac{-1}{\tan \theta -\sec \theta }=\frac{1}{\sec \theta -\tan \theta } \)
which is the RHS of the identity, we are required to prove.

Maths Guide: Concepts, Formulas, Videos and Solved Examples

Maths

Are you afraid of big numbers and complex equations? Then, don’t be because Maths is not that much complicated than any mess. Maths can become your friend if you put some effort to understand and solve it. If you’re dreaming to be the next math genius, then having a grip on all Maths basic and standard concepts is mandatory. So, browse the concepts prevailed here and start solving any kind of Math problem easily & quickly.

Learn Basic Maths, Topics and Formulas for Mathematics

Mathematics is the only subject that we all will use at every single step of life. If you want to become a Math genius, all you need is a thorough understanding of the concepts of maths like basic calculations, tricks & tips to solve every sum. Students should have a grip on the basic concepts to comprehend their mathematical skills. However, we will learn Maths right from our kindergarten to doctorate courses. Moreover, we have often seen both Math lovers and haters at school time. Students hate the subject because of owing a lot of formulas, equations, figures, and complex calculations. At times, teaching and learning Mathematics become tedious but here comes the best solution to it.

At Aplustopper, Mathematics is treated as a fun subject, where you can learn and understand easily. Only required is to have a strong foundation on all basic concepts beginning from the basics to algebra, geometry, trigonometry, arithmetic, calculus, probability, and many more. Here, we have explained all these basic maths fundamentals in a simple and accurate manner to aid our students to enjoy learning mathematics. Making a good grip on Math basics, via understanding and practice will help you to develop your thinking power and it leads to run your brain in a logical way in all concepts. Thus results in solving all Math problems with great speed and efficiency.

Maths – Class 6 to Class 10

Pre-Algebra | Maths

Patterns

Big and Small Numbers

Handling Negative Numbers

Fundamental Operations on Integers

Doing Calculations

Using Inequalities (less than, greater than)

Using Exponents

Factors and Multiples

Ratios and Proportions

Fractions and Percents

Rational and Irrational Numbers

How to Estimate Answers

  • Introduction to Estimation
  • Estimation Tips and Tricks
  • Visual Estimation
  • Estimation Games

Some Examples Using Pre-Algebra
Here are some subjects of Mathswhere you can use your new skills:

Algebra 1 | Maths

The Basics

Exponents

Simplifying

Factoring

Logarithms

Polynomials

Linear Equations

Quadratic Equations

Solving Word Questions

  • Solving Word Questions
  • Solving Inequality Word Questions

Functions

Sequences and Series

Algebra 2 | Maths

Sets

Numbers

Inequalities

Exponents

Polynomials

Graphing Polynomials

  • How Polynomials Behave
  • Polynomials: The Rule of Signs
  • Polynomials: Bounds on Zeros

Equations

  • Equations and Formulas
  • Solving Equations
  • Simplify
  • Solving Word Questions
  • Zero Product Property
  • Implication and Iff
  • Theorems, Corollaries, Lemmas

Graphs

Linear Equations

Functions

Equations of Second Degree

Solving

  • Mathematical Models and Mathematical Models 2
  • Approximate Solutions
  • Intermediate Value Theorem
  • Solving Radical Equations
  • Change of Variables
  • Algebra Mistakes

Solving Inequalities

Exponents and Logarithms

Systems of Linear Equations

Probability

Sequences, Series and Partial Sums

Finally
These last few subjects use what you have learned above.

Calculus | Maths

Limits

Derivatives (Differential Calculus)

  • Introduction to Derivatives
  • Slope of a Function at a Point (Interactive)
  • Derivatives as dy/dx
  • Derivative Plotter (Interactive)
  • Derivative Rules
  • Power Rule
  • Second Derivative
  • Partial Derivatives
  • Differentiable
  • Finding Maxima and Minima using Derivatives
  • Concave Upwards and Downwards and Inflection Points
  • Implicit Differentiation
  • Taylor Series (uses derivatives)

Integration (Integral Calculus)

Differential Equations

With Aplustopper provided Math Calculation tricks & resources, students can learn Mathematics in an easy manner. Here we are providing learning tutorials & study materials for all basic maths concepts including solved examples and exercise problems for helping students to understand each and every topic with full clarity. Aplustopper’s main aim is to help children in understanding math is fun, rather than being afraid of it. If they are good at math fundamentals and understand every concept deeply, then they will be excited about the subject for the rest of their educational journey.

Frequently Asked Questions

1. Who is the father of mathematics?

Archimedes – The Father Of Mathematics. The father of Archimedes is Astronomer. When he was growing up, the family of Archimedes encouraged him to get an education. Archimedes was passionate in mathematics, science, poetry, politics, and military tactics.

2. What is basic maths?

Basic math is nothing but a simple or basic concept related to mathematics. Usually, counting, addition, subtraction, multiplication, and division are known as basic math operations. The other mathematical concepts are developed on top of the above 4 operations.

3. Which is better basic maths or standard maths?

Standard Maths is nothing but the concepts which students will learn in higher classes, whereas the concepts which are fundamental like adding, subtraction, etc. considered as Basic Mathematics. Therefore, the level of difficulty of the Standard Maths is higher than the Basic Maths. At last, in my view, the conclusion that I can give is “Basic Maths is better than Standard Maths”.

4. What are the Basic Concepts of Mathematics?

The major concepts involved in pure maths are as follows:

  • Number system,
  • Pre-algebra,
  • Algebra,
  • Commercial Arithmetic,
  • Geometry,
  • Trigonometry,
  • Arithmetic,
  • Statistics,
  • Calculus,
  • Probability and many more

5. How can I become really perfect at Maths?

Anyone can become really good at math. All you need is practice and understanding power while solving math problems. If you follow these 8 tips then no one can stop you to succeed in solving math sums. So, check out the following points and focus on your weak points more while practicing:

  • Do all of the homework. Don’t ever think of homework as a choice.
  • Fight not to miss class.
  • Find a friend to be your study partner.
  • Establish a good relationship with the teacher.
  • Analyze and understand every mistake.
  • Get help fast.
  • Don’t swallow your questions.
  • Basic skills are essential.
  • Algebra I must be mastered.
  • Understand what the calculator is doing.

6. What are the different maths resources available at APlusTopper.com?

APLUSTOPPER offers students reliable math resources as well as theoretical explanations. A few primary resources that every student may require while learning Maths are listed here and available at APlus Topper for free:

  • CBSE NCERT Solutions for Maths
  • RS Aggarwal and RD Sharma Solutions for Class 1 to Class 12 Mathematics
  • CBSE Maths Previous Question papers  for all Classes
  • Important Questions for Board exams
  • Sample Papers for Board Exams
  • Syllabus and Exam blueprints
  • Unitwise Lessons in PDF format
  • Maths worksheets
  • Revision notes

 

Trigonometric Ratios Of Complementary Angles

Trigonometric Ratios Of Complementary Angles


We know Trigonometric ratios of complementary angles are pair of angles whose sum is 90°
Like 40°, 50°, 60°, 30°, 20°, 70°, 15°, 75° ; etc,
Formulae:
sin (90° – θ) = cos θ,         cot (90° – θ) = tanθ
cos (90° – θ) = sin θ,         sec (90° – θ) = cosec θ
tan (90° – θ) = cot θ,         cosec (90° – θ) = sec θ

Trigonometric Ratios Of Complementary Angles With Examples

Example 1:    \( \text{Evaluate }\frac{\tan 65{}^\circ }{\cot 25{}^\circ }.  \)
Sol.    ∵ 65° + 25° = 90°
\( \frac{\tan 65{}^\circ }{\cot 25{}^\circ }=\frac{\tan \,(90{}^\circ -25{}^\circ )}{\cot \,25{}^\circ }=\frac{\cot 25{}^\circ }{\cot 25{}^\circ }=1 \)

Example 2:    Without using trigonometric tables, evaluate the following:
\(\left( i \right)~\text{ }\frac{\cos \,\,37{}^\text{o}}{\sin \,\,53{}^\text{o}}\text{   }\left( ii \right)~\frac{\sin \,\,41{}^\text{o}}{\cos \,\,49{}^\text{o}}~\text{   }\left( iii \right)~\frac{\sin \,\,30{}^\text{o}17\acute{\ }}{\cos \,\,59{}^\text{o}\,43\acute{\ }}\)
Sol.    (i)  We have,
\( \frac{\cos \,\,37{}^\text{o}}{\sin \,\,53{}^\text{o}}=\frac{\cos (90{}^\text{o}-53{}^\text{o})}{\sin \,\,53{}^\text{o}}=\frac{\sin \,\,53{}^\text{o}}{\sin \,\,53{}^\text{o}}=1 \)
[∵  cos(90º – θ) = sin θ]
(ii)  We have,
\( \frac{\sin \,\,41{}^\text{o}}{\cos \,\,49{}^\text{o}}=\frac{\sin (90{}^\text{o}-49{}^\text{o})}{\cos \,49{}^\text{o}}=\frac{\cos \,49{}^\text{o}}{\cos \,49{}^\text{o}}=1 \)
[∵  sin (90º – θ) = cos θ]
(iii)  We have,
\( \frac{\sin \,\,30{}^\text{o}\,17\acute{\ }}{\cos \,\,59{}^\text{o}\,43\acute{\ }}=\frac{\sin (90{}^\text{o}-59{}^\text{o}43\acute{\ })}{\cos \,59{}^\text{o}43\acute{\ }}=\frac{\cos \,59{}^\text{o}43\acute{\ }}{\cos \,59{}^\text{o}43\acute{\ }}=1 \)

Example 3:    Without using trigonometric tables evaluate the following:
(i) sin2 25º + sin2 65º (ii) cos2 13º – sin77º
Sol.   (i) We have,
sin25º + sin265º = sin2 (90º – 65º) + sin65º
= cos265º + sin265º = 1
[∵ sin (90º – θ) = cos θ]
(ii) We have,
cos213º– sin277º = cos2(90º – 77º) – sin277º
= sin277º – sin277º = 0
[∵ cos (90º – θ) = sin θ]

Example 4:    \( (\text{i})\text{ }\frac{\cot \,\,54{}^\text{o}}{\tan \,\,36{}^\text{o}}+\frac{\tan \,\,20{}^\text{o}}{\cot \,\,70{}^\text{o}}-2 \)
(ii)  sec 50º sin 40° + cos 40º cosec 50º
Sol.   (i)  We have,
\( \frac{\cot \,\,54{}^\text{o}}{\tan \,\,36{}^\text{o}}+\frac{\tan \,\,20{}^\text{o}}{\cot \,\,70{}^\text{o}}-2 \)
\( =\frac{\cot (90{}^\text{o}-36{}^\text{o})}{\tan 36{}^\text{o}}+\frac{\tan \,20{}^\text{o}}{\cot (90{}^\text{o}-20{}^\text{o})}-2 \)
\( =\frac{\tan \,\,36{}^\text{o}}{\tan \,\,36{}^\text{o}}+\frac{\tan \,\,20{}^\text{o}}{\tan \,\,20{}^\text{o}}-2\)
= 1 + 1 – 2 = 0
(ii)  We have,
sec50º sin40º + cos40º cosec50º
= sec(90º – 40º) sin40º + cos40º cosec(90º – 40º)
= cosec40º sin40º + cos40ºsec40º
\( =\frac{\sin \,\,40{}^\text{o}}{\sin \,\,40{}^\text{o}}+\frac{\cos \,\,40{}^\text{o}}{\cos \,\,40{}^\text{o}}\)
= 1 + 1 = 2

Example 5:     Express each of the following in terms of trigonometric ratios of angles between 0º and 45º;
(i) cosec 69º + cot 69º
(ii) sin 81º + tan 81º
(iii) sin 72º + cot 72º
Sol.    (i) We have,
cosec 69º + cot 69º
= cosec (90º – 21º) + cot (90º – 21º)
= sec 21º + tan 21º
[∵ cosec (90º – θ) = sec θ and cot (90º –θ) = tan θ]
(ii) We have,
sin 81º + tan 81º
= sin (90º – 9º) + tan (90º – 9º)
= cos 9º + cot 9º
[∵ sin (90º – θ) = cos θ and tan (90º –θ) = cot θ]
(iii) We have,
sin 72º + cot 72º
= sin (90º – 18º) + cot (90º – 18º)
= cos 18º + tan 18º
[∵ sin (90º – 18º) = cos 18º and tan (90º –18º) = cot 18º]

Example :6     Without using trigonometric tables, evaluate the following:
\( \frac{{{\sin }^{2}}20{}^\text{o}+{{\sin }^{2}}70{}^\text{o}}{{{\cos }^{2}}20{}^\text{o}+{{\cos }^{2}}70{}^\text{o}}+\frac{\sin (90{}^\text{o}-\theta )\sin \theta }{\tan \theta }+\frac{\cos (90{}^\text{o}-\theta )\cos \theta }{\cot \theta } \)
Sol.       \( \frac{{{\sin }^{2}}20{}^\text{o}+{{\sin }^{2}}70{}^\text{o}}{{{\cos }^{2}}20{}^\text{o}+{{\cos }^{2}}70{}^\text{o}}+\frac{\sin (90{}^\text{o}-\theta )\sin \theta }{\tan \theta }+\frac{\cos (90{}^\text{o}-\theta )\cos \theta }{\cot \theta } \)
\( =\frac{{{\sin }^{2}}20{}^\text{o}+{{\sin }^{2}}(90{}^\text{o}-20{}^\text{o})}{{{\cos }^{2}}20{}^\text{o}+{{\cos }^{2}}(90{}^\text{o}-20{}^\text{o})}+\frac{\sin (90{}^\text{o}-\theta )\sin \theta }{\tan \theta }+\frac{\cos (90{}^\text{o}-\theta )\cos \theta }{\cot \theta } \)
\( =\frac{{{\sin }^{2}}20{}^\text{o}+{{\cos }^{2}}20{}^\text{o}}{{{\cos }^{2}}20{}^\text{o}+{{\sin }^{2}}20{}^\text{o}}+\frac{\cos \theta \sin \theta }{\frac{\sin \theta }{\cos \theta }}+\frac{\sin \theta \cos \theta }{\frac{\cos \theta }{\sin \theta }} \)
\( \left[ \sin (90{}^\text{o}-\theta )=\cos \theta \,\,\,and\cos (90{}^\text{o}-\theta )\,\,=\,\,\sin \theta \right] \)
= 1 + cos2 θ + sin2 θ = 1 + 1 = 2

Example :7     If tan 2θ = cot (θ + 6º), where 2θ and θ + 6º are acute angles, find the value of θ.
Sol.    We have,
tan 2θ = cot (θ + 6º)
⇒ cot(90º – 2θ) = cot (θ + 6º)
⇒ 90º – 2θ = θ + 6º  ⇒  3θ = 84º
⇒ θ = 28º

Example :8     If A, B, C are the interior angles of a triangle ABC, prove that
\( \tan \frac{B+C}{2}=\cot \frac{A}{2} \)
Sol.    In ∆ABC, we have
A + B + C = 180º
⇒ B + C = 180º – A
\( \Rightarrow \frac{B+C}{2}=\text{ }90{}^\text{o}-\frac{A}{2} \)
\( \Rightarrow \tan \left( \frac{B+C}{2} \right)=\tan \left( 90{}^\text{o}-\frac{A}{2} \right) \)
\( \Rightarrow \tan \left( \frac{B+C}{2} \right)=\cot \frac{A}{2} \)

Example :9     If tan 2A = cot (A – 18°), where 2A is an acute angle, find the value of A.
Sol.     tan 2A = cot (A – 18°)
cot (90° – 2A) = cot (A – 18°)
(∵ cot (90° – θ) = tan θ)
90° – 2A = A – 18°
3A = 108°
A = 36°

Example :10     If tan A = cot B, prove that A + B = 90°.
Sol.    ∵ tan A = cot B
tan A = tan (90° – B)
A = 90° – B
A + B = 90°. Proved

Example :11     If A, B and C are interior angles of a triangle ABC, then show that
\( \sin \left( \frac{B+C}{2} \right)=\cos \frac{A}{2}  \)
Sol.      A + B + C = 180° (a.s.p. of ∆)
B + C = 180° – A
\(\left( \frac{B+C}{2} \right)=90{}^\circ -\frac{A}{2}\)
\( \sin \left( \frac{B+C}{2} \right)=\sin \left( 90{}^\circ -\frac{A}{2} \right) \)
\( \sin \left( \frac{B+C}{2} \right)=\cos \frac{A}{2}  \)      Proved.

Example :12     Express sin 67° + cos 75° in terms of trigonometric ratios of angles between 0° and 45°.
Sol.    ∵ 23 = 90 – 67 & 15 = 90 – 75
∴ sin 67° + cos 75°
= sin (90 – 23)° + cos (90 – 15)°
= cos 23° + sin 15°.