Types Of Polynomials

Types Of Polynomials

(i) Based on degree :
If degree of polynomial is

Examples
1.One  Linearx + 3, y – x + 2, √3x –3
2.TwoQuadratic2x2 –7, \(\frac{1}{3}{{\text{x}}^{2}}+{{\text{y}}^{2}}-2\text{xy}\), x2 +1+ 3y
3.ThreeCubicx3 + 3x2 –7x+8, 2x2+5x3+7,
4.Fourbi-quadraticx4 + y4 + 2x2y2, x4 + 3,…

(ii) Based on Terms :
If number of terms in polynomial is

 Examples
1.OneMonomial7x, 5x9, 3x16, xy, ……
2.TwoBinomial2 + 7y6, y3 + x14, 7 + 5x9,…
3.ThreeTrinomialx3 –2x + y, x31+y32+ z33,…..

Note:
(1) Degree of constant polynomials (Ex.5, 7, –3, 8/5, …) is zero.
(2) Degree of zero polynomial (zero = 0 = zero polynomial) is not defined.

Read More:

How To Factorise A Polynomial By Splitting The Middle Term

Factorise A Polynomial By Splitting The Middle Term Example Problems With Solutions

Type I: Factorization of Quadratic polynomials of the form x2 + bx + c.
(i) In order to factorize x2 + bx + c we have to find numbers p and q such that p + q = b and pq = c.
(ii) After finding p and q, we split the middle term in the quadratic as px + qx and get desired factors by grouping the terms.

Example 1:    Factorize each of the following expressions:
(i) x2 + 6x + 8               (ii) x2 + 4x –21
Solution:
(i) In order to factorize x2  + 6x + 8, we find two numbers p and q such that p + q = 6 and pq = 8.
Clearly, 2 + 4 = 6 and 2 × 4 = 8.
We know split the middle term 6x in the given quadratic as 2x + 4x, so that
x2    + 6x + 8 = x2  + 2x + 4x + 8
= (x2  + 2x) + (4x + 8)
= x (x + 2) + 4 (x+ 2)
= (x + 2) (x + 4)
(ii) In order to factorize x2  + 4x – 21, we have to find two numbers p and q such that
p + q = 4 and pq = – 21
Clearly, 7 + (– 3) = 4 and 7 × – 3 = – 21
We now split the middle term 4x of
x2  + 4x – 21 as 7x – 3x, so that
x2  + 4x – 21 = x2  + 7x – 3 x – 21
= (x2  + 7x) – (3x + 21)
= x (x + 7) – 3 (x + 7) = (x + 7) (x – 3)

Example 2:    Factorize each of the following quadratic polynomials:   x2 – 21x + 108
Solution:    In order to factorize x2 – 21x + 108,
we have to find two numbers such that their sum is – 21 and the product 108.
Clearly, – 21 = – 12– 9 and – 12 × – 9 = 108
x2 – 21 x + 108 = x2 – 12 x – 9x + 108
= (x2 – 12 x) – (9x– 108)
= x(x – 12) – 9 (x – 12) = (x–12) (x – 9)

Example 3:    Factorize the following by splitting the middle term :  x2 + 3 √3 x + 6
Solution:    In order to factorize x2 + 3 √3 x + 6, we have to find two numbers p and q such that
How To Factorise A Polynomial By Splitting The Middle Term 1

Type II: Factorization of polynomials reducible to the form x2 + bx + c.

Example 4:    Factorize (a2 – 2a)2 – 23(a2 – 2a) + 120.
Solution:
How To Factorise A Polynomial By Splitting The Middle Term 2

Example 5:    Factorize the following by splitting the middle term x4– 5x2 + 4
Solution:
Let x2 = y. Then, x4 – 5x2 + 4
= y2 – 5 y + 4
Now, y2 – 5 y + 4
= y2 – 4y – y + 4
= (y2 – 4y) – (y – 4)
= y(y –4) – (y– 4)
= (y – 4) (y – 1)
Replacing y by x2 on both sides, we get
x4 – 5x2 + 4 = (x2–4) (x2 – 1)
= (x2–22) (x2 – 12) = (x–2) (x+2) (x – 1) (x + 1)

Example 6:    Factorize (x2 – 4x) (x2 – 4x – 1) – 20
Solution:
The given expression is
(x2 – 4x) (x2 – 4x – 1) – 20
= (x2 – 4x)2 – (x2 – 4x) – 20
Let x2 – 4x = y . Then,
(x2 – 4x)2 – (x2 – 4x) – 20 = y2 – y – 20
Now, y2 – y – 20
= y2 –5 y + 4y – 20
= (y2 – 5 y) + (4y– 20)
= y (y – 5) + 4 (y – 5)
= (y – 5) (y + 4)
Thus, y2 – y – 20 = (y – 5) (y + 4)
Replacing y by x2 – 4x on both sides, we get
(x2 – 4x)2 – (x2 – 4x) – 20
= (x2 – 4x – 5) (x2 – 4x +4)
= (x2 – 5x + x – 5) (x2 – 2 × x × 2 + 22)
= {x (x – 5) + (x – 5)} (x – 2)2
= (x – 5) (x + 1) (x – 2)2

Type III: Factorization of Expressions which are not quadratic but can factorized by splitting the middle term.

Example 7:    If x2 + px + q = (x + a) (x + b), then factorize x2 + pxy + qy2.
Solution:    We have,
x2 + px + q = (x + a) (x + b)
⇒ x2 + px + q = x2 + x(a + b) + ab
On equating the coefficients of like powers of x, we get
p = a + b and q = ab
∴ x2 + pxy + qy2 = x2 + (a + b)xy + aby2
= (x2 + axy) + (bxy + aby2)
= x(x + ay) + by(x + ay)
= (x + ay) (x + by)

Example 8:    Factorize the following expression x2y2 – xy – 72
Solution:
In order to factorize x2y2 – xy – 72, we have to find two numbers p and q such that
p+ q = – 1 and pq = – 72
clearly, – 9 +8 = – 1 and – 9 × 8 = – 72.
So, we write the middle term – xy of
x2y2 – xy – 72 as – 9 xy + 8 xy, so that
x2y2 – xy – 72 = x2y2 – 9 xy + 8 xy – 72
= (x2y22 – 9xy) + (8xy – 72)
= xy (xy – 9) + 8 (xy – 9)
= (xy – 9) (xy + 8)

Factorization Of Polynomials Of The Form ax2 + bx + c, a ≠ 0, 1

Type I: Factorization of quadratic polynomials of the form ax2 + bx + c, a 0, 1
(i) In order to factorize ax2 + bx + c. We find numbers l and m such that l + m = b and lm = ac
(ii) After finding l and m, we split the middle term bx as lx + mx and get the desired factors by grouping the terms.

Example 9:    Factorize the following expression
6x2 – 5 x – 6
Solution:    The given expression is of the form ax2+ bx+c, where, a = 6, b = – 5 and c = –6.
In order to factorize the given expression, we have to find two numbers l and m such that
l + m = b = i.e., l + m = – 5
and lm = ac i.e. lm = 6 × – 6 = – 36
i.e., we have to find two factors of – 36
such that their sum is – 5. Clearly,
– 9 + 4 = – 5 and – 9 × 4 = – 36
l = – 9 and m = 4
Now, we split the middle term – 5x of
x2 – 5x – 6 as – 9 x + 4x, so that
6x2 – 5x – 6 = 6x2–9x + 4x – 6
= (6x2 – 9x) + (4x – 6)
= 3x (2x – 3) + 2(2x – 3) = (2x – 3) (3x + 2)

Example 10:    Factorize each of the following expressions:
(i) √3 x2 + 11x + 6 √3
(ii) 4 √3 x2 + 5x – 2 √3
(iii) 7 √2 x2 – 10 x – 4 √2
Solution:   (i) The given quadratic expression is of the form ax2 + bx + c,
where a = √3, b = 11 and c = 6 √3.
In order to factorize it, we have to find two numbers l and m such that
How To Factorise A Polynomial By Splitting The Middle Term 3
How To Factorise A Polynomial By Splitting The Middle Term 4
How To Factorise A Polynomial By Splitting The Middle Term 5
How To Factorise A Polynomial By Splitting The Middle Term 6

Example 11:    Factorize the following by splitting the middle term
1/3 x2 – 2x – 9
Solution:    
How To Factorise A Polynomial By Splitting The Middle Term 7

Type II: Factorization of trinomial expressions which are not quadratic but can be factorized by splitting the middle term.

Example 12:    Factorize the following trinomial by splitting the middle term
8a3 – 2a2b – 15 ab2
Solution:    Here a3 × ab2 = (a2b)2 i.e., the product of the variables in first and last term is same as the square of the variables in the middle term. So, in order to factorize the given trinomial, we split the middle term
– 2a2b as – 12a2b + 10 a2b , so that
8a3 – 2a2b – 15 ab2
= 8a3 –12a2b +10 a2b–15 ab2
= 4a2(2a – 3b) + 5 ab (2a – 3b)
= (2a – 3b) (4a2 + 5ab)
= (2a – 3b) a (4a + 5b)
= a (2a – 3 b) (4a + 5b)

Type III : Factorization of trinomial expressions reducible to quadratic expressions.

Example 13:    Factorize each of the following expressions by splitting the middle term :
(i) 9(x – 2y)2– 4(x – 2y) – 13
(ii) 2(x + y)2 – 9(x + y) – 5
(iii) 8(a + 1)2 + 2(a + 1) (b + 2) – 15(b + 2)2
Solution:    (i) The given expression is 9(x – 2y)2 – 4(x – 2y) – 13.
Putting x – 2y = a, we get
9(x – 2y)2 – 4(x – 2y) – 13 = 9a2 – 4a – 13
Now, 9a2 – 4a – 13 = 9a2 – 13a + 9a – 13
= (9a2 – 13a) + (9a – 13)
= a(9a – 13) + (9a – 13)
= (a + 1) (9a – 13)
Replacing a by x – 2y on both sides, we get
9(x – 2y)2 – 4(x – 2y) – 13
= (x – 2y + 1) {9(x – 2y) – 13}
= (x – 2y + 1) (9x – 18y – 13)
(ii) The given expression is
2(x + y)2 – 9(x + y) – 5
Replacing x + y by a in the given expression, we have
2(x + y)2 – 9(x + y) – 5 = 2a2 – 9a – 5
Now, 2a2 – 9a – 5 = 2a2 – 10a + a – 5
= (2a2 – 10a) + (a – 5)
= 2a(a – 5) + (a – 5) = (a – 5) (2a + 1)
Replacing a by x + y on both sides, we get
2(x + y)2 – 9(x + y) – 5
= (x + y – 5) {2(x + y) + 1}
= (x + y – 5) (2x + 2y + 1).
(iii) The given trinomial is
8(a + 1)2 + 2(a + 1) (b + 2) – 15(b + 2)2
Putting a + 1 = x and b + 2 = y, we have
8(a + 1)2 + 2(a + 1) (b + 2) – 15(b + 2)2
= 8x2 + 2xy – 15y2
= 8x2 + 12xy – 10xy – 15y2
= 4x(2x + 3y) – 5y(2x + 3y)
= (2x + 3y) (4x – 5y)
Replacing x by a + 1 and y by b + 2, we get
8(a + 1)2 + 2(a + 1) (b + 2) – 15(b + 2)2
= {2(a + 1) + 3(b + 2)} {4(a + 1) – 5(b +2)}
= (2a + 3b + 8) (4a – 5b – 6)

 

Monomials, Binomials, and Polynomials

Monomials, Binomials, and Polynomials

  1. A monomial is the product of non-negative integer powers of variables. Consequently, a monomial has NO variable in its denominator. It has one term. (mono implies one)
    Monomials, Binomials, and Polynomials 1
    (notice: no negative exponents, no fractional exponents)
  2. A binomial is the sum of two monomials. It has two unlike terms.
    (bi implies two)
    Monomials, Binomials, and Polynomials 2
  3. A trinomial is the sum of three monomials. It has three unlike terms. (tri implies three)
    Monomials, Binomials, and Polynomials 3
  4. A polynomial is the sum of one or more terms. (poly implies many)
    Monomials, Binomials, and Polynomials 4

Polynomials are in simplest form when they contain no like terms.
Monomials, Binomials, and Polynomials 5

Polynomials are generally written in descending order.
Monomials, Binomials, and Polynomials 6

Read More:

Dividing Polynomials

Dividing Polynomials

We will be examining polynomials divided by monomials and by binomials.

Dividing a Polynomial by a Monomial:

Steps for Dividing a Polynomial by a Monomial:

  1. Divide each term of the polynomial by the monomial.
    a) Divide numbers (coefficients)
    b) Subtract exponents
    Dividing Polynomials 1
    * The number of terms in the polynomial equals the number of terms in the answer when dividing by a monomial.
  2. Remember that numbers do not cancel and disappear! A number divided by itself is 1. It reduces to the number 1.
  3. Remember to write the appropriate sign in between the terms.

Example 1:
Dividing Polynomials 2

Another way of looking at “dividing by a monomial” is multiplying by the reciprocal of the monomial. See Example 2.

Example 2:

Dividing Polynomials 3

Dividing a Polynomial by a Binomial:

Steps for Dividing a Polynomial by a Binomial:

  1. Remember that the terms in a binomial cannot be separated from one another when reducing. For example, in the binomial 2x + 3, the 2x can never be reduced unless the entire expression 2x + 3 is reduced.
  2. Factor completely both the numerator and denominator before reducing.
  3. Divide both the numerator and denominator by their greatest common factor.

Example 1:
Factor the numerator.
Reduce the common factor of x + 3.
Dividing Polynomials 4
Example 2:
Factor the numerator.
Reduce the common factor of a – 5.
Dividing Polynomials 5

Example 3:
Factor the numerator.
Reduce the common factor y + 2.
Dividing Polynomials 6

Example 4:
Factor the numerator.
Factor the denominator.
Reduce the common factor of x + 2.
Dividing Polynomials 7

Example 5:
7 – x and x – 7 are “almost” the same, except that the signs of the terms are opposite one another. To create a situation that will allow for reducing, factor out -1 from one of these binomials.
Dividing Polynomials 8

Read More:

Subtracting Polynomials

Subtracting Polynomials

Subtract like terms by changing the signs of the terms being subtracted, and following the rules for adding polynomials.

Subtracting Polynomials 3

Below are several different ways to attack this example:

Example 1: Subtract (2x2 + 4x – 6) from (x2 – 4)
Solution:
Horizontal Method:
Notice the order of this subtraction. Just as is done when subtracting signed numbers, change the signs of the terms being subtracted (or distribute -1), and follow the rules for adding signed like terms.
Subtracting Polynomials 1

Vertical Method:
Again, notice the order of the subtraction. Change the signs of the terms being subtracted, and follow the rules for adding signed like terms. In this problem, we insert 0x to hold the missing column for x.
Subtracting Polynomials 2

Read More: