Area Of A Triangle

Area Of A Triangle

The area of a triangle, the coordinates of whose vertices are (x1, y1), (x2, y2) and (x3, y3) is
\(\frac { 1 }{ 2 }\) | x1 (y2 – y3) + x2 (y3 – y1) + x3 (y1 – y2) |
Remark: The area of ∆ABC can also be computed by using the following steps:
Step I: Write the coordinates of the vertices A(x1, y1), B(x2, y2) and C(x3, y3) in three coloums as shown below and augment the coordinates of A(x1, y1) as fourth coloumn.
Step II: Draw broken parallel lines pointing down wards from left to right and right to left.
Area Of A Triangle 1Step III: Compute the sum of the products of numbers at the ends of the lines pointing downwards from left to right and subtract from this sum the sum of the products of numbers at the ends of the lines pointing downward from right to left i.e., compute
(x1y2 + x2y3 + x3y1) – (x2y1 + x3y2 + x1y3)
Step IV: Find the absolute of the number obtained in step III and take its half to obtain the area.
Remark: Three points A(x1, y1), B(x2, y2) and C(x3, y3) are collinear iff
Area of ∆ABC = 0 i.e., x1(y2 – y3) + x2 (y3 – y1) + x3 (y1 – y2) = 0

Read More:

Area Of A Triangle With Examples

Type I: On finding the area of a triangle when coordinates of its vertices are given.
Example 1:    Find the area of a triangle whose vertices are A(3, 2), B (11, 8) and C(8, 12).
Sol.    Let A = (x1, y1) = (3, 2), B = (x2, y2) = (11, 8) and C = (x3, y3) = (8, 12) be the given points. Then,
Area of ∆ABC =  \(\frac { 1 }{ 2 }\) | x1 (y2 – y3) + x2 (y3 – y1) + x3 (y1 – y2) |
⇒  Area of ∆ABC =  \(\frac { 1 }{ 2 }\) |{3(8 – 12) + 11 (12 – 2) + 8 (2 – 8)}|
⇒  Area of ∆ABC =  \(\frac { 1 }{ 2 }\) |(–12 + 110 – 48)| = 25 sq. units
ALTER We have,
Area Of A Triangle 2∴  Area of ∆ABC =  \(\frac { 1 }{ 2 }\) |(3 × 8 + 11 ×12 + 8 × 2) – (11 × 2 + 8 × 8 + 3 × 12)|
⇒ Area of ∆ABC =  \(\frac { 1 }{ 2 }\) |(24 + 132 + 16) – (22 + 64 + 36)|
⇒ Area of ∆ABC =  \(\frac { 1 }{ 2 }\) | 172 – 122 | = 25 sq. units

Example 2:    Prove that the area of triangle whose vertices are (t, t – 2), (t + 2, t + 2) and (t + 3, t) is independent of t.
Sol.    Let A = (x1, y1) = (t, t – 2), B (x2, y2) = (t + 2, t + 2) and C (x3, y3) = (t + 3, t) be the vertices of the given triangle. Then,
Area of ∆ABC =  \(\frac { 1 }{ 2 }\) | x1 (y2 – y3) + x2 (y3 – y1) + x3 (y1 – y2) |
⇒  Area of ∆ABC =  \(\frac { 1 }{ 2 }\) |{t(t + 2 – t) + (t + 2) (t – t + 2) + (t + 3) (t – 2 – t – 2)}|
⇒ Area of ∆ABC =  \(\frac { 1 }{ 2 }\) |{2t + 2t + 1 – 4t – 12}| = | – 4|
= 4 sq. units
Clearly, area of ∆ABC is independent t.
ALTER We have,
Area Of A Triangle 3∴  Area of ∆ABC  \(=\frac{1}{2}\left| \{t(t+2)+(t+2)t+(t+3)(t-2)\}-\{(t+2)(t-2)+(t+3)(t+2)+t\times t\} \right|\)
⇒ Area of ∆ABC =  \(\frac { 1 }{ 2 }\) |(t2 + 2t + t2 + 2t + t2 + t – 6) – (t2 – 4 + t2 + 5t + 6 + t2)|
⇒ Area of ∆ABC =  \(\frac { 1 }{ 2 }\) | (3t2 + 5t – 6) – (3t2 + 5t + 2)|
⇒ Area of ∆ABC =  \(\frac { 1 }{ 2 }\) | (–6 – 2)|
⇒ Area of ∆ABC = 4 sq. units
Hence, Area of ∆ABC is independent of t.

Example 3:    Find the area of the triangle formed by joining the mid-point of the sides of the triangle whose vertices are (0, –1), (2, 1) and (0, 3). Find the ratio of area of the triangle formed to the area of the given triangle.
Sol.   Let A (0, –1), B(2, 1) and C(0, 3) be the vertices of ∆ABC. Let D, E, F be the mid-points of sides BC, CA and AB respectively. Then, the coordinates of D, E and F are (1, 2), (0, 1) and (1, 0) respectively.
Now,
Area of ∆ABC =  \(\frac { 1 }{ 2 }\) | x1 (y2 – y3) + x2 (y3 – y1) + x3 (y1 – y2) |
⇒ Area of ∆ABC =  \(\frac { 1 }{ 2 }\) | 0(1 – 3) + 2 (3 – (–1)) + 0(0 – 1)|
⇒ Area of ∆ABC =  \(\frac { 1 }{ 2 }\) | 0 + 8 + 0 | = 4 sq. units
Area of ∆DEF =  \(\frac { 1 }{ 2 }\) | x1 (y2 – y3) + x2 (y3 – y1) + x3 (y1 – y2) |
Area Of A Triangle 4⇒ Area of ∆DEF =  \(\frac { 1 }{ 2 }\) |1 (1 – 0) + 0 (0 – 2) + 1 (2 – 1)|
⇒ Area of ∆DEF =  \(\frac { 1 }{ 2 }\) |1 + 1| = 1 sq. units
∴  Area of ∆DEF : Area of ∆ABC = 1 : 4

Example 4:    If D, E and F are the mid-points of sides BC, CA and AB respectively of a ∆ABC, then using coordinate geometry prove that
Area of ∆DEF =   \(\frac { 1 }{ 4 }\) (Area of ∆ABC)
Sol.    Let A(x1, y1), B(x2, y2) and C(x3, y3) be the vertices of ∆ABC. Then, the coordinates of D, E and F  are
\(\left( \frac{{{x}_{2}}+{{x}_{3}}}{2},\ \frac{{{y}_{2}}+{{y}_{3}}}{2} \right)\left( \frac{{{x}_{1}}+{{x}_{3}}}{2},\ \frac{{{y}_{1}}+{{y}_{3}}}{2} \right)\left( \frac{{{x}_{1}}+{{x}_{2}}}{2},\ \frac{{{y}_{1}}+{{y}_{2}}}{2} \right)\text{  respectively}\text{.}\)
Area Of A Triangle 51 = Area of ∆ABC =   \(\frac { 1 }{ 2 }\) | x1 (y2 – y3) + x2 (y3 – y1) + x3 (y1 – y2) |
2 = Area of ∆DEF
\(=\frac{1}{2}\left| \left( \frac{{{x}_{2}}+{{x}_{3}}}{2} \right)\left( \frac{{{y}_{1}}+{{y}_{3}}}{2}-\frac{{{y}_{1}}+{{y}_{2}}}{2} \right)+\left( \frac{{{x}_{1}}+{{x}_{3}}}{2} \right) \right.\left( \frac{{{y}_{1}}+{{y}_{2}}}{2}-\frac{{{y}_{2}}+{{y}_{3}}}{2} \right)+\left( \frac{{{x}_{1}}+{{x}_{2}}}{2} \right)\left. \left( \frac{{{y}_{2}}+{{y}_{3}}}{2}-\frac{{{y}_{1}}+{{y}_{3}}}{2} \right) \right|\)
⇒ ∆2 =  \(\frac { 1 }{ 8 }\) |(x2 + x3)(y3 – y2) + (x1 + x3)(y1 – y3) + (x1 + x2)(y2 – y1)|
⇒ ∆2 =  \(\frac { 1 }{ 8 }\) |x1(y1 – y3 + y2 – y1) + x2 (y3 – y2 + y2 – y1) + x3 (y3 – y2 + y1 – y3)|
⇒ ∆2 =  \(\frac { 1 }{ 8 }\) |x1 (y2 – y3) + x2 (y3 – y1) + x3 (y1 – y2)|
⇒ ∆2 =   \(\frac { 1 }{ 4 }\) (Area of ∆ABC) =  \(\frac { 1 }{ 4 }\) ∆1
Hence, Area of ∆DEF = \(\frac { 1 }{ 4 }\) (Area of ∆ABC)

Example 5:    The vertices of ∆ABC = are A (4, 6), B(1, 5) and C(7, 2). A line is drawn to intersect sides AB and AC at D and E respectively such that  \( \frac{AD}{AB}=\frac{AE}{AC}=\frac{1}{4} \) . Calculate the area of ∆ADE and compare it with the area of ∆ABC.
Sol.   We have,
\( \frac{AD}{AB}=\frac{AE}{AC}=\frac{1}{4} \)
\( \Rightarrow \frac{AB}{AD}=\frac{AC}{AE}=4\)
\( \Rightarrow \frac{AD+DB}{AD}=\frac{AE+EC}{AE}=4 \)
\( \Rightarrow 1+\frac{DB}{AD}=1+\frac{EC}{AE}=4 \)
\( \Rightarrow \frac{DB}{AD}=\frac{EC}{AE}=3\Rightarrow \frac{AD}{DB}=\frac{AE}{EC}=\frac{1}{3} \)
⇒ AD : DB = AE : EC = 1 : 3
⇒ D and E divide AB and AC respectively in the ratio 1 : 3.
Area Of A Triangle 6So, the co-ordinates of D and E are
\(\left( \frac{1+12}{1+3},\ \frac{5+18}{1+3} \right)=\left( \frac{13}{4},\ \frac{23}{4} \right)\text{ and }\left( \frac{7+12}{1+3},\ \frac{2+18}{1+3} \right)=\left( \frac{19}{4},\ 5 \right)\text{ respectively}\text{.}\)
We have,
Area Of A Triangle 7
∴  Area of ∆ADE
\( =\frac{1}{2}\left| \left( 4\times \frac{23}{4}+\frac{13}{4}\times 5+\frac{19}{4}\times 6 \right)-\left( \frac{13}{4}\times 6+\frac{19}{4}\times \frac{23}{4}+4\times 5 \right) \right| \)
\( =\frac{1}{2}\left| \left( \frac{92}{4}+\frac{65}{4}+\frac{114}{4} \right)-\left( \frac{78}{4}+\frac{437}{16}+20 \right) \right| \)
\( =\frac{1}{2}\left| \frac{271}{4}-\frac{1069}{16} \right| \)
\( =\frac{1}{2}\times \frac{15}{16}=\frac{15}{32}sq.\text{ }untis. \)
Also, we have
Area Of A Triangle 8∴  Area of ∆ABC =   \(\frac { 1 }{ 2 }\) |(4 × 5 + 1 × 2 + 7 × 6) – (1 × 6 + 7 × 5 + 4 × 2)|
⇒ Area of ∆ABC =   \(\frac { 1 }{ 2 }\) |(20 + 2 + 42) – (6 + 35 + 8)|
⇒ Area of ∆ABC =   \(\frac { 1 }{ 2 }\) |64 – 49| = sq. units
\( \frac{Area\ of\ \Delta ADE}{Area\ of\ \Delta ABC}=\frac{15/32}{15/2}=\frac{1}{16}\)
Hence, Area of ∆ADE : Area of ∆ABC = 1 : 16.

Example 6:    If A(4, –6), B(3, –2) and C(5, 2) are the vertices of ∆ABC, then verify the fact that a median of a triangle ABC divides it into two triangle of equal areas.
Sol.    Let D be the mid-point of BC. Then, the coordinates of D are (4, 0).
Area Of A Triangle 9∴   Area of ∆ABC =   \(\frac { 1 }{ 2 }\) |(4 × (– 2) + 3 × 2 + 5 × (– 6)) – (3 × (– 6) + 5 × (–2) + 4 × 2)|
⇒ Area of ∆ABC =   \(\frac { 1 }{ 2 }\) |( –8 + 6 – 30) – (–18 – 10 + 8)|
⇒ Area of ∆ABC =   \(\frac { 1 }{ 2 }\) | –32 + 20 | = 6 sq. units
Also, We have
Area Of A Triangle 10\( \text{ Also of }\Delta \text{ABD = }\left| \{(4\times (-2)+3\times 0+4\times (-6))\}-\{3\times (-6)+4\times (-2)+4\times 0\} \right|\)
⇒ Area of ∆ABD =   \(\frac { 1 }{ 2 }\) |(–8 + 0 + 26) – (–18 – 8 + 0)|
⇒ Area of ∆ABD =   \(\frac { 1 }{ 2 }\) |(–32 + 26)| = 3 sq. units
\(\Rightarrow \frac{Area\ of\ \Delta ABC}{Area\ of\ \Delta ABD}=\frac{6}{3}=\frac{2}{1}\)
⇒ Area of ∆ABC = 2 (Area of ∆ABD)

TypeII: On finding the area of a quadrilateral when coordinates of its vertices are given
Example 7:    Find the area of the quadrilateral ABCD whose vertices are respectively A(1, 1), B(7, –3), C(12, 2) and D(7, 21).
Sol.    Area of quadrilateral ABCD = | Area of ∆ABC | + | Area of ∆ACD |
We have,
Area Of A Triangle 11∴   Area of ∆ABC =   \(\frac { 1 }{ 2 }\) |(1× –3 + 7 × 2 + 12 × 1) – (7 × 1 + 12 × (–3) + 1× 2)|
Area of ∆ABC =   \(\frac { 1 }{ 2 }\) |(–3 + 14 + 12) – (7 – 36 + 2)|
Area of ∆ABC =   \(\frac { 1 }{ 2 }\) |23 + 27| = 25 sq. units
Also, we have
Area Of A Triangle 12Area of ∆ACD =   \(\frac { 1 }{ 2 }\) |(1 ×2 + 12 × 21 + 7 × 1) – (12 × 1 + 7 × 2 + 1 × 21)|
Area of ∆ACD =   \(\frac { 1 }{ 2 }\) |(2 + 252 + 7) – (12 + 14 + 21)|
Area of ∆ACD =   \(\frac { 1 }{ 2 }\) |261 – 47| = 107 sq. units
Area of quadrilateral ABCD = 25 + 107 = 132 sq. units

Type III: On collinearity of three points
Three points A(x1, y1), B(x2, y2) and C(x3, y3) are collinear if
Area of ∆ABC = 0 i.e., x1(y2 – y3) + x2 (y3 – y1) + x3 (y1 – y2) = 0

Example 8:    Prove that the points (2, – 2), (–3, 8) and (–1, 4) are collinear.
Sol.    Let ∆ be the area of the triangle formed by the given points.
We have,
Area Of A Triangle 13∴  ∆ =   \(\frac { 1 }{ 2 }\) |{2 × 8 + (–3) × 4 + (–1) × (–2)} – {(–3) × (–2) + (–1) × 8 + 2 × 4}|
⇒ ∆ =   \(\frac { 1 }{ 2 }\) |(16 – 12 + 2) – (6 – 8 + 8)|
⇒ ∆ =   \(\frac { 1 }{ 2 }\) |6 – 6| = 0
Hence, given points are collinear.

Example 9:    Prove that the points (a, b + c), (b, c + a) and (c, a + b) are collinear.
Sol. Let ∆ be the area of the triangle formed by the points (a, b + c), (b, c + a) and (c, a + b).
We have,
Area Of A Triangle 14∴   ∆ =   \(\frac { 1 }{ 2 }\) |{a (c + a) + b (a + b) + c (b + c)} – {b (b + c) + c (c + a) + a (a + b)}|
⇒ ∆ =   \(\frac { 1 }{ 2 }\) |(ac + a2 + ab + b2 + bc + c2) – (b2 + bc + c2 + ca + a2 + ab)|
⇒ ∆ = 0
Hence, the given points are collinear.

Type IV: On Finding the desired result or unknown when three points are collinear
Example 10:    For what value of k are the points (k, 2 – 2k), (–k + 1, 2k) and (–4 – k, 6 – 2k) are collinear ?
Sol.    Given points will be collinear, if area of the triangle formed by them is zero.
We have,
Area Of A Triangle 15i.e.,
|{2k2 + (–k + 1) (6 – 2k) + (–4 – k) (2 – 2k)} – {(–k + 1) (2 – 2k) + (–4 – k) (2k) + k (6 – 2k)}| = 0
⇒ |(2k2 + 6 –8k + 2k2 + k2 + 6k – 8) – (2 – 4k + k2 – 8k – 2k2 + 6k – 2k2)| = 0
⇒ (6k2 – 2k – 2) – (–2k2 – 6k + 2) = 0
⇒ 8k2 + 4k – 4 = 0
⇒ 2k2 + k – 1 = 0  ⇒ (2k – 1) (k + 1) = 0
⇒ k = 1/2 or, k = – 1
Hence, the given points are collinear for
⇒ k = 1/2 or, k = – 1.

Example 11:    For what value of x will the points (x, –1), (2, 1) and (4, 5) lie on a line ?
Sol.    Given points will be collinear if the area of the triangle formed by them is zero.
∴  Area of the triangle = 0
Area Of A Triangle 16|{x × 1 + 2 × 5 + 4 × (–1)} – {(2 × (–1) + 4 × 1 + x × 5}| = 0
⇒ (x + 10 – 4) – (–2 + 4 + 5x) = 0
⇒ (x + 6) – (5x + 2) = 0
⇒ – 4x + 4 = 0
⇒ x = 1
Hence, the given points lies on a line, if x = 1.

Type V: Mixed problems based upon the concept of area of a triangle
Example 12:     If the coordinates of two points A and B are (3, 4) and (5, – 2) respectively. Find the coordniates of any point P, if PA = PB and Area of ∆PAB = 10.
Sol.    Let the coordinates of P be (x, y). Then,
PA = PB
⇒ PA2 = PB2
⇒ (x – 3)2 + (y– 4)2 = (x – 5)2 + (y + 2)2
⇒ x – 3y – 1 = 0             ….(1)
Now, Area of ∆PAB = 10
Area Of A Triangle 17⇒   \(\frac { 1 }{ 2 }\) |(4x + 3 × (–2) + 5y) – (3y + 20 – 2x)| = 10
⇒ |(4x + 5y – 6) – (–2x + 3y + 20)| = 20
⇒ |6x + 2y – 26| = ± 20   ⇒    6x + 2y – 26 = ± 20
⇒ 6x + 2y – 46 = 0 or, 6x + 2y – 6 = 0
⇒ 3x + y – 23 = 0 or, 3x + y – 3 = 0
Solving x – 3y – 1 = 0 and 3x + y – 23 = 0
we get x = 7, y = 2.
Solving x – 3y – 1 = 0 and 3x + y – 3 = 0,
we get x = 1, y = 0.
Thus, the coordinates of P are (7, 2) or (1, 0).

Example 13:    The coordinates of A, B, C are (6, 3), (–3, 5) and (4, – 2) respectively and P is any point (x, y). Show that the ratio of the areas of triangle PBC and ABC is  Area Of A Triangle 18.
Sol. We have,
Area Of A Triangle 19∴  Area of ∆PBC =   \(\frac { 1 }{ 2 }\) |(5x+6+4y)–(–3y+20–2x)|
⇒ Area of ∆PBC =   \(\frac { 1 }{ 2 }\) |5x + 6 + 4y + 3y – 20 + 2x|
⇒ Area of ∆PBC =   \(\frac { 1 }{ 2 }\) |7x + 7y – 14|
⇒ Area of ∆PBC =   \(\frac { 7 }{ 2 }\) |x + y– 2|
⇒ Area of ∆PBC =   \(\frac { 7 }{ 2 }\) |6 + 3 – 2|   \(\left[ \text{Replacing}\ \text{x}\ \text{by}\ \text{6}\ \text{and}\ \text{y}=\text{3in}\ \text{Area}\ \text{of}\ \text{ }\!\!\Delta\!\!\text{ PBC} \right]\)
⇒ Area of ∆ABC =   \(\frac { 49 }{ 2 }\)
\( \frac{Area\ of\ \Delta PBC}{Area\ of\ \Delta ABC}=\frac{\frac{7}{2}|x+y-2|}{\frac{49}{2}} \)
\( =\frac{|x+y-2|}{7}=\left| \frac{x+y-2}{7} \right| \)

How to find the Areas of an Isosceles Triangle and an Equilateral Triangle?

How to find the Areas of an Isosceles Triangle and an Equilateral Triangle?

Area of a triangle

You can also use Equilatoral Triangle Calculator to find the area and perimeter.

How to find the Areas of an Isosceles Triangle and an Equilateral Triangle 1

Area of a right triangle

How to find the Areas of an Isosceles Triangle and an Equilateral Triangle 2

Area of an equilateral triangle

How to find the Areas of an Isosceles Triangle and an Equilateral Triangle 3
How to find the Areas of an Isosceles Triangle and an Equilateral Triangle 4

Area of isosceles triangle

How to find the Areas of an Isosceles Triangle and an Equilateral Triangle 5

Areas of an Isosceles Triangle and an Equilateral Triangle Problems with Solutions

1. Find the area of the following triangles :
How to find the Areas of an Isosceles Triangle and an Equilateral Triangle 6
Solution:
(i) Base = 6 cm and height = 5 cm.
∴ Area of the triangle = ½ × base × height
= ½ × 6 cm × 5 cm = 3 cm × 5 cm
= 15 sq cm.

(ii) Base = 3.2 cm and height = 2 cm.
Therefore, area = ½ × base × height
= ½ × 3.2 × 2 = 3.2 cm × 1 cm = 3.2 sq cm

(iii) Base = 6 cm and height = 7.4 cm.
Therefore, area = ½ × base × height
= ½ × 6 cm × 7.4 cm = 3 cm × 7.4 cm
= 22.2 sq cm.

(iv) Base = 10 cm and height = 7.5 cm.
∴ Area of the triangle = ½ × base × height
= ½ × 10 cm × 7.5 cm = 5 cm × 7.5 cm
= 37.5 sq cm.

2. Find the height of a triangle whose base is  60 cm in figure and whose area is 600 sq cm.
How to find the Areas of an Isosceles Triangle and an Equilateral Triangle 7
Solution:
How to find the Areas of an Isosceles Triangle and an Equilateral Triangle 8

What is the Heron’s formula

What is the Heron’s formula

Heron’s formula: If we have all sides of triangle and their is no way to find height then we use this formula for area of triangle.
Heron’s-formula

Heron’s Formula Example Problems With Solutions

Example 1:    For given figure find the s (s – a).
Heron’s-formula-Example-1
Solution:
Heron’s-formula-Example-1-1

Example 2:    If  semiperimeter of a triangle is 60 cm & its two sides are 45 cm, 40 cm then find third side.
Solution:
Heron’s-formula-Example-2

Example 3:    If perimeter of an equilateral triangle is 96 cm, then find its each side.
Solution:
Heron’s-formula-Example-3

Example 4:    If one side from two equal sides of a Δ is 14 cm and semiperimeter is 22.5 cm then find the third side.
Solution:
Heron’s-formula-Example-4

Example 5:    Find the length of AD in given figure, if EC = 4 cm and AB = 5 cm.
Heron’s-formula-Example-5
Solution:
Heron’s-formula-Example-5-1

Example 6:    Find the area of a triangle whose sides are of lengths 52 cm, 56 cm and 60 cm respectively.
Solution:
Heron’s-formula-Example-6

Example 7:    Using Heron’s formula, find the area of an equilateral triangle of side a units.
Solution:
Heron’s-formula-Example-7
Heron’s-formula-Example-7-1

Example 8:    Find the area of an isosceles triangle each of whose equal sides is 13 cm and whose base is 24 cm.
Solution:
Heron’s-formula-Example-8

Example 9:    The perimeter of a triangular field is 450 m and its sides are in the ratio 13 : 12 : 5. Find the area of the triangle.
Solution:
Heron’s-formula-Example-9

Example 10:    Find the percentage increase in the area of a triangle if its each side is doubled.
Solution:
Heron’s-formula-Example-10
Heron’s-formula-Example-10-1

Example 11:    The lengths of the sides of a triangle are in the ratio 3 : 4 : 5 and its perimeter is 144 cm. Find (i) the area of the triangle and (ii) the height corresponding to the longest side.
Solution:
Heron’s-formula-Example-11
Heron’s-formula-Example-11-1

Example 12:    Find the area of the shaded region in figure:
Heron’s-formula-Example-12
Solution:
Heron’s-formula-Example-12-1
Heron’s-formula-Example-12-2
Example 13:    Find the area of an isosceles triangle of its sides are a cm, a cm and b cm.
Solution:
Heron’s-formula-Example-13

Example 14:    A traffic signal board, indicating ‘SCHOOL AHEAD’, is an equilateral triangle with side ‘a’. Find the area of the signal board, using Heron’s formula. If its perimeter is 180 cm, what will be the area of the signal board ?
Solution:
Heron’s-formula-Example-14