Matrices Class 10 ICSE ML Aggarwal Chapter Test

ML Aggarwal Class 10 Solutions Matrices Chapter Test

These Solutions are part of ML Aggarwal Class 10 Solutions for ICSE Maths. Here we have given ML Aggarwal Class 10 Solutions for ICSE Maths Chapter 9 Matrices Chapter Test.

Question 1.
Find the values of a and below
\(\begin{bmatrix} a+3 & { b }^{ 2 }+2 \\ 0 & -6 \end{bmatrix}=\begin{bmatrix} 2a+1 & 3b \\ 0 & { b }^{ 2 }-5b \end{bmatrix}\)
Solution:
\(\begin{bmatrix} a+3 & { b }^{ 2 }+2 \\ 0 & -6 \end{bmatrix}=\begin{bmatrix} 2a+1 & 3b \\ 0 & { b }^{ 2 }-5b \end{bmatrix}\)
comparing the corresponding elements
a + 3 = 2a + 1
=> 2a – a =3 – 1
=> a = 2
b² + 2 = 3b
=>b² – 3b + 2 = 0
=> b² – b – 2b + 2 = 0
=> b (b – 1) – 2 (b – 1) = 0
=> (b – 1) (b – 2) = 0.
Either b – 1 = 0, then b = 1 or b – 2 = 0,
then b = 2
Hence a = 2, 5 = 2 or 1 Ans.

Question 2.
Find a, b, c and d if \(3\begin{bmatrix} a & b \\ c & d \end{bmatrix}=\begin{bmatrix} 4 & a+b \\ c+d & 3 \end{bmatrix}+\begin{bmatrix} a & 6 \\ -1 & 2d \end{bmatrix}\)
Solution:
Given
\(3\begin{bmatrix} a & b \\ c & d \end{bmatrix}=\begin{bmatrix} 4 & a+b \\ c+d & 3 \end{bmatrix}+\begin{bmatrix} a & 6 \\ -1 & 2d \end{bmatrix}\)
ML Aggarwal Class 10 Solutions for ICSE Maths Chapter 9 Matrices Chapter Test Q2.1

Question 3.
Find X if Y = \(\begin{bmatrix} 3 & 2 \\ 1 & 4 \end{bmatrix} \) and 2X + Y = \(\begin{bmatrix} 1 & 0 \\ -3 & 2 \end{bmatrix} \)
Solution:
Given
2X + Y = \(\begin{bmatrix} 1 & 0 \\ -3 & 2 \end{bmatrix} \)
=> 2X = 2X + Y = \(\begin{bmatrix} 1 & 0 \\ -3 & 2 \end{bmatrix} \) – Y
ML Aggarwal Class 10 Solutions for ICSE Maths Chapter 9 Matrices Chapter Test Q3.1

Question 4.
Determine the matrices A and B when
A + 2B = \(\begin{bmatrix} 1 & 2 \\ 6 & -3 \end{bmatrix} \) and 2A – B = \(\begin{bmatrix} 2 & -1 \\ 2 & -1 \end{bmatrix} \)
Solution:
A + 2B = \(\begin{bmatrix} 1 & 2 \\ 6 & -3 \end{bmatrix} \)…..(i)
2A – B = \(\begin{bmatrix} 2 & -1 \\ 2 & -1 \end{bmatrix} \)…….(ii)
Multiplying (i) by 1 and (ii) by 2
ML Aggarwal Class 10 Solutions for ICSE Maths Chapter 9 Matrices Chapter Test Q4.1

Question 5.
(i) Find the matrix B if A = \(\begin{bmatrix} 4 & 1 \\ 2 & 3 \end{bmatrix} \) and A² = A + 2B
(ii) If A = \(\begin{bmatrix} 1 & 2 \\ -3 & 4 \end{bmatrix} \), B = \(\begin{bmatrix} 0 & 1 \\ -2 & 5 \end{bmatrix} \)
and C = \(\begin{bmatrix} -2 & 0 \\ -1 & 1 \end{bmatrix} \) find A(4B – 3C)
Solution:
A = \(\begin{bmatrix} 4 & 1 \\ 2 & 3 \end{bmatrix} \)
let B = \(\begin{bmatrix} a & b \\ c & d \end{bmatrix} \)
ML Aggarwal Class 10 Solutions for ICSE Maths Chapter 9 Matrices Chapter Test Q5.1
ML Aggarwal Class 10 Solutions for ICSE Maths Chapter 9 Matrices Chapter Test Q5.2
ML Aggarwal Class 10 Solutions for ICSE Maths Chapter 9 Matrices Chapter Test Q5.3

Question 6.
If A = \(\begin{bmatrix} 1 & 4 \\ 1 & 0 \end{bmatrix} \), B = \(\begin{bmatrix} 2 & 1 \\ 3 & -1 \end{bmatrix} \) and C = \(\begin{bmatrix} 2 & 3 \\ 0 & 5 \end{bmatrix} \) compute (AB)C = (CB)A ?
Solution:
Given
A = \(\begin{bmatrix} 1 & 4 \\ 1 & 0 \end{bmatrix} \),
B = \(\begin{bmatrix} 2 & 1 \\ 3 & -1 \end{bmatrix} \) and
C = \(\begin{bmatrix} 2 & 3 \\ 0 & 5 \end{bmatrix} \)
ML Aggarwal Class 10 Solutions for ICSE Maths Chapter 9 Matrices Chapter Test Q6.1
ML Aggarwal Class 10 Solutions for ICSE Maths Chapter 9 Matrices Chapter Test Q6.2

Question 7.
If A = \(\begin{bmatrix} 3 & 2 \\ 0 & 5 \end{bmatrix} \) and B = \(\begin{bmatrix} 1 & 0 \\ 1 & 2 \end{bmatrix} \) find the each of the following and state it they are equal:
(i) (A + B)(A – B)
(ii)A² – B²
Solution:
Given
A = \(\begin{bmatrix} 3 & 2 \\ 0 & 5 \end{bmatrix} \) and
B = \(\begin{bmatrix} 1 & 0 \\ 1 & 2 \end{bmatrix} \)
ML Aggarwal Class 10 Solutions for ICSE Maths Chapter 9 Matrices Chapter Test Q7.1
ML Aggarwal Class 10 Solutions for ICSE Maths Chapter 9 Matrices Chapter Test Q7.2

Question 8.
If A = \(\begin{bmatrix} 3 & -5 \\ -4 & 2 \end{bmatrix} \) find A² – 5A – 14I
Where I is unit matrix of order 2 x 2
Solution:
Given
A = \(\begin{bmatrix} 3 & -5 \\ -4 & 2 \end{bmatrix} \)
ML Aggarwal Class 10 Solutions for ICSE Maths Chapter 9 Matrices Chapter Test Q8.1
ML Aggarwal Class 10 Solutions for ICSE Maths Chapter 9 Matrices Chapter Test Q8.2

Question 9.
If A = \(\begin{bmatrix} 3 & 3 \\ p & q \end{bmatrix} \) and A² = 0 find p and q
Solution:
Given
A = \(\begin{bmatrix} 3 & 3 \\ p & q \end{bmatrix} \)
ML Aggarwal Class 10 Solutions for ICSE Maths Chapter 9 Matrices Chapter Test Q9.1

Question 10.
If A = \(\begin{bmatrix} \frac { 3 }{ 5 } & \frac { 2 }{ 5 } \\ x & y \end{bmatrix} \) and A² = I, find x,y
Solution:
Given
A = \(\begin{bmatrix} \frac { 3 }{ 5 } & \frac { 2 }{ 5 } \\ x & y \end{bmatrix} \)
ML Aggarwal Class 10 Solutions for ICSE Maths Chapter 9 Matrices Chapter Test Q10.1
ML Aggarwal Class 10 Solutions for ICSE Maths Chapter 9 Matrices Chapter Test Q10.2

Question 11.
If \(\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}\begin{bmatrix} a & b \\ c & d \end{bmatrix}=\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \) find a,b,c and d
Solution:
Given
\(\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}\begin{bmatrix} a & b \\ c & d \end{bmatrix}=\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \)
ML Aggarwal Class 10 Solutions for ICSE Maths Chapter 9 Matrices Chapter Test Q11.1

Question 12.
Find a and b if
\(\begin{bmatrix} a-b & b-4 \\ b+4 & a-2 \end{bmatrix}\begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}=\begin{bmatrix} -2 & -2 \\ 14 & 0 \end{bmatrix} \)
Solution:
Given
\(\begin{bmatrix} a-b & b-4 \\ b+4 & a-2 \end{bmatrix}\begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}=\begin{bmatrix} -2 & -2 \\ 14 & 0 \end{bmatrix} \)
ML Aggarwal Class 10 Solutions for ICSE Maths Chapter 9 Matrices Chapter Test Q12.1

Question 13.
If A = \(\begin{bmatrix} { sec60 }^{ o } & { cos90 }^{ o } \\ { -3tan45 }^{ o } & { sin90 }^{ o } \end{bmatrix} \) and B = \(\begin{bmatrix} 0 & { cos45 }^{ o } \\ -2 & { 3sin90 }^{ o } \end{bmatrix} \)
Find (i) 2A – 3B (ii) A² (iii) BA
Solution:
Given
A = \(\begin{bmatrix} { sec60 }^{ o } & { cos90 }^{ o } \\ { -3tan45 }^{ o } & { sin90 }^{ o } \end{bmatrix} \) and
B = \(\begin{bmatrix} 0 & { cos45 }^{ o } \\ -2 & { 3sin90 }^{ o } \end{bmatrix} \)
ML Aggarwal Class 10 Solutions for ICSE Maths Chapter 9 Matrices Chapter Test Q13.1
ML Aggarwal Class 10 Solutions for ICSE Maths Chapter 9 Matrices Chapter Test Q13.2

Hope given ML Aggarwal Class 10 Solutions for ICSE Maths Chapter 9 Matrices Chapter Test are helpful to complete your math homework.

If you have any doubts, please comment below. APlusTopper try to provide online math tutoring for you.

Value Added Tax Class 10 ICSE ML Aggarwal

In this chapter, you will find detailed solutions to the problems presented in the Ml Aggarwal Class 10 Solutions ICSE Maths, Value Added Tax. These solutions provide step-by-step explanations, making it easier to understand the underlying principles and apply them to various mathematical problems.

ML Aggarwal Class 10 Solutions Value Added Tax

ML-Aggarwal ICSE Solutions for Class 10 Maths Ch 25 Value Added Tax Q1.1 
ML-Aggarwal ICSE Solutions for Class 10 Maths Ch 25 Value Added Tax Q1.2
ML-Aggarwal ICSE Solutions for Class 10 Maths Ch 25 Value Added Tax Q1.3
ML-Aggarwal ICSE Solutions for Class 10 Maths Ch 25 Value Added Tax Q1.4
ML-Aggarwal ICSE Solutions for Class 10 Maths Ch 25 Value Added Tax Q1.5
ML-Aggarwal ICSE Solutions for Class 10 Maths Ch 25 Value Added Tax Q1.6
ML-Aggarwal ICSE Solutions for Class 10 Maths Ch 25 Value Added Tax Q1.7
ML-Aggarwal ICSE Solutions for Class 10 Maths Ch 25 Value Added Tax Q1.8
ML-Aggarwal ICSE Solutions for Class 10 Maths Ch 25 Value Added Tax Q1.9
ML-Aggarwal ICSE Solutions for Class 10 Maths Ch 25 Value Added Tax Q1.10
ML-Aggarwal ICSE Solutions for Class 10 Maths Ch 25 Value Added Tax Q1.11
ML-Aggarwal ICSE Solutions for Class 10 Maths Ch 25 Value Added Tax Q1.12
ML-Aggarwal ICSE Solutions for Class 10 Maths Ch 25 Value Added Tax Q1.13
ML-Aggarwal ICSE Solutions for Class 10 Maths Ch 25 Value Added Tax Q1.14
ML-Aggarwal ICSE Solutions for Class 10 Maths Ch 25 Value Added Tax Q1.15
ML-Aggarwal ICSE Solutions for Class 10 Maths Ch 25 Value Added Tax Q1.16

Understanding ICSE Mathematics Class 10 ML Aggarwal Solutions

  1. Compound Interest Class 10 ICSE ML Aggarwal Solutions
  2. Sales Tax And Value Added Tax Class 10 ICSE ML Aggarwal Solutions
  3. Banking Class 10 ICSE ML Aggarwal Solutions
  4. Shares and Dividends Class 10 ICSE ML Aggarwal Solutions
  5. Linear Inequations Class 10 ICSE ML Aggarwal Solutions
  6. Quadratic Equations in One Variable Class 10 ICSE ML Aggarwal Solutions
  7. Factor Theorem (Factorization) Class 10 ICSE ML Aggarwal Solutions
  8. Ratio and Proportion Class 10 ICSE ML Aggarwal Solutions
  9. Matrices Class 10 ICSE ML Aggarwal Solutions
  10. Reflection Class 10 ICSE ML Aggarwal Solutions
  11. Section Formula Class 10 ICSE ML Aggarwal Solutions
  12. Equation of a Straight Line Class 10 ICSE ML Aggarwal Solutions
  13. Symmetry Class 10 ICSE ML Aggarwal Solutions
  14. Similarity Class 10 ICSE ML Aggarwal Solutions
  15. Locus Class 10 ICSE ML Aggarwal Solutions
  16. Circles Class 10 ICSE ML Aggarwal Solutions
  17. Constructions Class 10 ICSE ML Aggarwal Solutions
  18. Mensuration Class 10 ICSE ML Aggarwal Solutions
  19. Trigonometric Identities Class 10 ICSE ML Aggarwal Solutions
  20. Trigonometric Tables Class 10 ICSE ML Aggarwal Solutions
  21. Heights and Distances Class 10 ICSE ML Aggarwal Solutions
  22. Graphical Representation Class 10 ICSE ML Aggarwal Solutions
  23. Measures of Central Tendency Class 10 ICSE ML Aggarwal Solutions
  24. Probability Class 10 ICSE ML Aggarwal Solutions
  25. Value Added Tax Class 10 ICSE ML Aggarwal Solutions