Solving Systems Of Equations By Elimination Method

Solving Systems Of Equations By Elimination Method

Step I: Let the two equations obtained be
a1x + b1y + c1 = 0                    ….(1)
a2x + b2y + c2 = 0                    ….(2)
Step II: Multiplying the given equation so as to make the co-efficients of the variable to be eliminated equal.
Step III: Add or subtract the equations so obtained in Step II, as the terms having the same coefficients may be either of opposite or the same sign.
Step IV : Solve the equations in one varibale so obtained in Step III.
Step V: Substitute the value found in Step IV in any one of the given equations and then copmpute the value of the other variable.

Elimination Method Examples

Example 1:    Solve the following system of linear equations by applying the method of elimination by equating the coefficients :
(i) 4x – 3y = 4                (ii) 5x – 6y = 8
2x + 4y = 3                     3x + 2y = 6
Sol.   (i)   We have,
4x – 3y = 4             ….(1)
2x + 4y = 3             ….(2)
Let us decide to eliminate x from the given equation. Here, the co-efficients of x are 4 and 2 respectively. We find the L.C.M. of 4 and 2 is 4. Then, make the co-efficients of x equal to 4 in the two equations.
Multiplying equation (1) with 1 and equation (2) with 2, we get
4x – 3y = 4           ….(3)
4x + 8y = 6          ….(4)
Subtracting equation (4) from (3), we get
–11y = –2  ⇒    y =  \(\frac { 2 }{ 11 }\)
Substituting y = 2/11 in equation (1), we get
⇒ 4x – 3 × \(\frac { 2 }{ 11 }\) = 4
⇒ 4x – \(\frac { 6 }{ 11 }\) = 4
⇒ 4x = 4 + \(\frac { 6 }{ 11 }\)
⇒ 4x = \(\frac { 50 }{ 11 }\)
⇒ x = \(\frac { 50 }{ 44 }\) = \(\frac { 25 }{ 22 }\)
Hence, solution of the given system of equation is :
x = \(\frac { 25 }{ 22 }\),  y = \(\frac { 2 }{ 11 }\)

(ii) We have;
5x – 6y = 8       ….(1)
3x + 2y = 6       ….(2)
Let us eliminate y from the given system of equations. The co-efficients of y in the given equations are 6 and 2 respectively. The L.C.M. of 6 and 2 is 6. We have to make the both coefficients equal to 6. So, multiplying both sides of equation (1) with 1 and equation (2) with 3, we get
5x – 6y = 8       ….(3)
9x + 6y = 18     ….(4)
Adding equation (3) and (4), we get
14x = 26      ⇒   x = \(\frac { 13 }{ 7 }\)
Putting x = \(\frac { 13 }{ 7 }\) in equation (1), we get
5 × \(\frac { 13 }{ 7 }\) – 6y = 8     ⇒ \(\frac { 65 }{ 7 }\) – 6y = 8
⇒ 6y = \(\frac { 65 }{ 7 }\) – 8 =  \(\frac { 65-56 }{ 7 }\) = \(\frac { 9 }{ 7 }\)
⇒ y = \(\frac { 9 }{ 42 }\) = \(\frac { 3 }{ 14 }\)
Hence, the solution of the system of equations is x = \(\frac { 13 }{ 7 }\) , y = \(\frac { 3 }{ 14 }\)

Example 2:    Solve the following system of linear equations by usnig the method of elimination by equating the coefficients:
3x + 4y = 25 ;      5x – 6y = – 9
Sol.    The given system of equation is
3x + 4y = 25            ….(1)
5x – 6y = – 9          ….(2)
Let us eliminate y. The coefficients of y are 4 and – 6. The LCM of 4 and 6 is 12. So, we make the coefficients of y as 12 and – 12.
Multiplying equation (1) by 3 and equation (2) by 2, we get
9x + 12y = 75            ….(3)
10x – 12y = – 18       …(4)
Adding equation (3) and equation (4), we get
19x = 57   ⇒   x = 3.
Putting x = 3 in (1), we get,
3 × 3 + 4y = 25
⇒ 4y = 25 – 9 = 16  ⇒   y = 4
Hence, the solution is x = 3, y = 4.
Verification: Both the equations are satisfied by x = 3 and y = 4, which shows that the solution is correct.

Example 3:    Solve the following system of equations:
15x + 4y = 61;   4x + 15y = 72
Sol.   The given system of equation is
15x + 4y = 61         ….(1)
4x + 15y = 72        ….(2)
Let us eliminate y. The coefficients of y are 4 and 15. The L.C.M. of 4 and 15 is 60. So, we make the coefficients of y as 60. Multiplying (1) by 15 and (2) by 4, we get
225x + 60y = 915     ….(3)
16x + 60y = 288      ….(4)
Substracting (4) from (3), we get
209x = 627    ⇒  x = 3
Putting x = 3 in (1), we get
15 × 3 + 4y = 61 45 + 4y = 61
4y = 61 – 45 = 16   ⇒   y = 4
Hence, the solution is x = 3, y = 4.
Verification: On putting x = 3 and y = 4 in the given equations, they are satisfied. Hence, the solution is correct.

Example 4:    Solve the following system of equations by using the method of elimination by equating the co-efficients.
\(\frac { x }{ y }\) + \(\frac { 2y }{ 5 }\) + 2 = 10;  \(\frac { 2x }{ 7 }\) – \(\frac { 5 }{ 2 }\) + 1 = 9
Sol.    The given system of equation is
\(\frac { x }{ y }\) + \(\frac { 2y }{ 5 }\) + 2 = 10  ⇒   \(\frac { x }{ y }\) + \(\frac { 2y }{ 5 }\) = 8 …(1)
\(\frac { 2x }{ 7 }\) – \(\frac { 5 }{ 2 }\) + 1 = 9   ⇒   \(\frac { 2x }{ 7 }\) – \(\frac { 5 }{ 2 }\) = 8 ….(2)
The equation (1) can be expressed as :
\(\frac { 5x+4y }{ 10 }\) = 8    ⇒  5x + 4y = 80 ….(3)
Similarly, the equation (2) can be expressed as :
\(\frac { 4x-7y }{ 14 }\) = 8    ⇒  4x – 7y = 112 ….(4)
Now the new system of equations is
5x + 4y = 80 ….(5)
4x – 7y = 112 ….(6)
Now multiplying equation (5) by 4 and equation (6) by 5, we get
20x – 16y = 320 ….(7)
20x + 35y = 560 ….(8)
Subtracting equation (7) from (8), we get ;
y = \(-\frac { 240 }{ 51 }\)
Putting y = \(-\frac { 240 }{ 51 }\) in equation (5), we get ;
5x + 4 × \(\frac { -240 }{ 51 }\) = 80   ⇒    5x – \(\frac { 960 }{ 51 }\) = 80
⇒  5x = 80 + \(\frac { 960 }{ 51 }\) = \(\frac { 4080+960 }{ 51 }\) = \(\frac { 5040 }{ 51 }\)
⇒  x = \(\frac { 5040 }{ 255 }\) = \(\frac { 1008 }{ 51 }\)= \(\frac { 336 }{ 17 }\)   ⇒  x = \(\frac { 336 }{ 17 }\)
Hence, the solution of the system of equations is, x = \(\frac { 336 }{ 17 }\),   y = \(-\frac { 80 }{ 17 }\) .

Example 5:    Solve the following system of linear equatoins by using the method of elimination by equating the coefficients
√3x – √2y = √3 = ; √5x – √3y = √2
Sol.    The given equations are
√3x – √2y = √3      ….(1)
√5x – √3y = √2       ….(2)
Let us eliminate y. To make the coefficients of equal, we multiply the equation (1) by √3 and equation (2) by √2 to get
3x – √6y = 3             ….(3)
√10x + √6y = 2        ….(4)
Adding equation (3) and equation (4), we get
3x + √10x = 5 ⇒  (3 + √10) x = 5
\( \Rightarrow \text{x}=\frac{5}{3+\sqrt{10}}=\left( \frac{5}{\sqrt{10}+3} \right)\times \left( \frac{\sqrt{10}-3}{\sqrt{10}-3} \right)\)
\(=5\left( \sqrt{10}-3 \right)\)
Putting x = 5( √10– 3) in (1) we get
√3 × 5(√10 – 3) –√2 y = √3
⇒ 5√30 – 15√3 – √2y = √3
⇒ √2y = 5√30 – 15√3 – √3
⇒ √2y = 5√30 – 16√3
⇒ \(y=\frac{5\sqrt{30}}{\sqrt{2}}-\frac{16\sqrt{3}}{\sqrt{2}}\)
⇒ y = 5√15 – 8√6
Hence, the solution is x = 5( √10– 3) and y = 5√15 – 8√6

Example 6:    Solve for x and y :
\(\frac { ax }{ b }\) – \(\frac { by }{ a }\) = a + b ; ax – by = 2ab
Sol.   The given system of equations is
\(\frac { ax }{ b }\) – \(\frac { by }{ a }\) = a + b     ….(1)
ax – by = 2ab      ….(2)
Dividing (2) by a, we get
x – \(\frac { by }{ a }\) = 2b ….(3)
On subtracting (3) from (1), we get
\(\frac { ax }{ b }\) – x = a – b    ⇒    \(x\left( \frac{a}{b}-1 \right)\) = a – b
⇒ x = \(\frac{(a-b)b}{a-b}\) = b      ⇒ x = b
On substituting the value of x in (3), we get
b –  \(\frac { by }{ a }\)  = 2b  ⇒ \(b\left( 1-\frac{y}{a} \right)\) = 2b
⇒  1 –  \(\frac { y }{ a }\) = 2    ⇒     \(\frac { y }{ a }\) = 1 – 2
⇒  \(\frac { y }{ a }\) = –1      ⇒   y = –a
Hence, the solution of the equations is
x = b, y = – a

Example 7:    Solve the following system of linear equations :
2(ax – by) + (a + 4b) = 0
2(bx + ay) + (b – 4a) = 0
Sol.    2ax – 2by + a + 4b = 0 …. (1)
2bx + 2ay + b – 4a = 0 …. (2)
Multiplyng (1) by b and (2) by a and subtracting, we get
2(b2 + a2) y = 4 (a2 + b2) ⇒   y = 2
Multiplying (1) by a and (2) by b and adding, we get
2(a2 + b2) x + a2 + b2 = 0
2(a2 + b2) x = – (a2 + b2)  ⇒   x = – 1/2
Hence x = –1/2, and y = 2

Example 8:    Solve (a – b) x + (a + b) y = a2 – 2ab – b2
(a + b) (x + y) = a2 + b2
Sol.   The given system of equation is
(a – b) x + (a + b) y = a2 – 2ab – b2 ….(1)
(a + b) (x + y) = a2 + b2 ….(2)
⇒  (a + b) x + (a + b) y = a2 + b2 ….(3)
Subtracting equation (3) from equation (1), we get
(a – b) x – (a + b) x = (a2 – 2ab– b2) – (a2 + b2)
⇒  –2bx = – 2ab – 2b2
⇒  \(\text{x}=\frac{-2ab}{-2b}-\frac{2{{b}^{2}}}{-2b}=a+b\)
Putting the value of x in (1), we get
⇒  (a – b) (a + b) + (a + b) y = a2  – 2ab – b2
⇒  (a + b) y = a2  – 2ab – b2 – (a2  – b2 )
⇒  (a + b) y = – 2ab
⇒  y = \(\frac { -2ab }{ a+b }\)
Hence, the solution is x = a + b,
y = \(\frac { -2ab }{ a+b }\)

Solving Systems Of Equations By Substitution Method

Solving Systems Of Equations By Substitution Method

In this method, we first find the value of one   variable (y) in terms of another variable (x) from one equation. Substitute this value of y in the second equation. Second equation becomes a linear equation in x only and it can be solved for x.
Putting the value of x in the first equation, we can find the value of y.
This method of solving a system of linear equations is known as the method of elimination by substitution.
‘Elimination’, because we get rid of y or ‘eliminate’ y from the second equation. ‘Substitution’, because we ‘substitute’ the value of y in the second equation.
Working rule:
Let the two equations be
a1x + b1y + c1 = 0                      ….(1)
a2x + b2y + c2 = 0                    ….(2)
Step I: Find the value of one variable, say y, in terms of the other i.e., x from any equation, say (1).
Step II: Substitute the value of y obtained in step 1 in the other equation i.e., equation (2). This equation becomes equation in one variable x only.
Step III: Solve the equation obtained in step II to get the value of x.
Step IV: Substitute the value of x from step II to the equation obtained in step I. From this equation, we get the value of y. In this way, we get the solution i.e. values of x and y.
Remark : Verification is a must to check the answer.

Substitution Method Examples

Example 1:    Solve each of the following system of equations by eliminating x (by substitution) :
(i) x + y = 7               (ii) x + y = 7                (iii) 2x – 7y = 1
2x – 3y = 11             12x + 5y = 7                    4x + 3y = 15
(iv) 3x – 5y = 1          (v) 5x + 8y = 9
5x + 2y = 19               2x + 3y = 4
Sol.    (i) We have,
x + y = 7           ….(1)
2x – 3y = 11    ….(2)
We shall eliminate x by substituting its value from one equation into the other. from equaton (1), we get
x + y = 7           ⇒   x = 7 – y
Substituting the value of x in equation (2), we get
2 × (7 – y) – 3y = 11
⇒  14 – 2y – 3y      = 11
⇒  –5y = – 3          or,        y = 3/5
Now, substituting the value of y in equation (1), we get
x + 3/5 = 7     ⇒     x = 32/5.
Hence, x = 32/5 and y = 3/5

(ii) We have,
x + y = 7         ….(1)
12x + 5y = 7   ….(2)
From equation (1), we have
x + y = 7    ⇒   x = 7 – y
Substituting the value of y in equation (2), we get
⇒ 12(7 – y) + 5y = 7
⇒ 84 – 12y + 5y = 7
⇒ –7y = – 77
⇒ y = 11
Now, Substituting the value of y in equation (1), we get
x + 11 = 7    ⇒   x = – 4
Hence, x = – 4, y = 11.

(iii) We have,
2x – 7y = 1 ….(1)
4x + 3y = 15 ….(2)
From equation (1), we get
2x – 7y = 1    ⇒  x = \(\frac{7y+1}{2}\)
Substituting the value of x in equation (2), we get ;
\(\Rightarrow 4\times \frac{7y+1}{2}+3y=15\)
\(\Rightarrow \frac{28y+4}{2}+3y=15\)
⇒ 28y + 4 + 6y = 30
⇒ 34y = 26     ⇒  y = \(\frac{13}{17}\)
Now, substituting the value of y in equation (1), we get
2x – 7 × \(\frac{13}{17}\) = 1
⇒ 2x = 1 + \(\frac{91}{17}\) =  \(\frac{108}{17}\)      ⇒    x = \(\frac{108}{34}\) = \(\frac{54}{17}\)
Hence,  x = \(\frac{54}{17}\) , y = \(\frac{13}{17}\)

(iv) We have,
3x – 5y = 1     …. (1)
5x + 2y = 19   …. (2)
From equation (1), we get;
3x – 5y = 1     ⇒    x = \(\frac{5y+1}{3}\)
Substituing the value of x in equation (2), we get
⇒ 5 × \(\frac{5y+1}{3}\) + 2y = 19
⇒ 25y + 5 + 6y = 57     ⇒    31y = 52
Thus, y = \(\frac{52}{31}\)
Now, substituting the value of y in equation (1), we get
3x – 5 × \(\frac{52}{31}\) = 1
⇒  3x – \(\frac{260}{31}\) = 1    ⇒  3x = \(\frac{291}{31}\)
⇒  x = \(\frac{97}{31}\)
Hence, x = \(\frac{97}{31}\) , y =  \(\frac{52}{31}\)

(v) We have,
5x + 8y = 9 ….(1)
2x + 3y = 4 ….(2)
From equation (1), we get
5x + 8y = 9  ⇒   x =  \(\frac{9-8y}{5}\)
Substituting the value of x in equation (2), we get
⇒  2 × \(\frac{9-8y}{5}\) + 3y = 4
⇒  18 – 16y + 15y = 20
⇒  –y = 2 or y = – 2
Now, substituting the value of y in equation (1), we get
5x + 8 (–2) = 9
5x = 25     ⇒   x = 5
Hence, x = 5, y = – 2.

Example 2:    Solve the following systems of equations by eliminating ‘y’ (by substitution) :
(i) 3x – y = 3          (ii) 7x + 11y – 3 = 0           (iii) 2x + y – 17 = 0
7x + 2y = 20         8x + y – 15 = 0                  17x – 11y – 8 = 0
Sol.    (i) We have,
3x – y = 3      ….(1)
7x + 2y = 20 ….(2)
From equation (1), we get ;
3x – y = 3     ⇒   y = 3x – 3
Substituting the value of ‘y’ in equation (2), we get
⇒  7x + 2 × (3x – 3) = 20
⇒  7x + 6x – 6 = 20
⇒  13x = 26  ⇒   x = 2
Now, substituting x = 2 in equation (1), we get;
3 × 2 – y = 3
⇒  y = 3
Hence, x = 2, y = 3.

(ii) We have,
7x + 11y – 3 = 0 ….(1)
8x + y – 15 = 0 …..(2)
From equation (1), we get;
7x + 11y = 3
⇒  y = \(\frac{3-7x}{11}\)
Substituting the value of ‘y’ in equation (2), we get
⇒  8x + \(\frac{3-7x}{11}\) = 15
⇒  88x + 3 – 7x = 165
⇒  81x = 162
⇒  x = 2
Now, substituting, x = 2 in the equation (2), we get
8 × 2 + y = 15
⇒  y = – 1
Hence, x = 2, y = – 1.

(iii) We have,
2x + y = 17 ….(1)
17x – 11y = 8 ….(2)
From equation (1), we get;
2x + y = 17   ⇒   y = 17 – 2x
Substituting the value of ‘y’ in equation (2), we get
⇒  17x – 11 (17 – 2x) = 8
⇒  17x – 187 + 22x = 8
⇒  39x = 195
⇒  x = 5
Now, substituting the value of ‘x’ in equation (1), we get
2 × 5 + y = 17
⇒  y = 7
Hence, x = 5, y = 7.

Example 3:    Solve the following systems of equations,
(i) \(\frac{15}{u}\) + \(\frac{2}{v}\) = 17           (ii)\(\frac{11}{v}\) – \(\frac{7}{u}\) = 1
\(\frac{1}{u}\) + \(\frac{1}{v}\) = \(\frac{36}{5}\)                   \(\frac{9}{v}\) + \(\frac{4}{u}\) = 6
Sol.    (i) The given system of equation is
\(\frac{15}{u}\) + \(\frac{2}{v}\) = 17   ….(1)
\(\frac{1}{u}\) + \(\frac{1}{v}\) = \(\frac{36}{5}\)    ….(2)
Considering 1/u = x, 1/v = y, the above system of linear equations can be written as
15x + 2y = 17          ….(3)
x + y = \(\frac{36}{5}\)       ….(4)
Multiplying (4) by 15 and (iii) by 1, we get
15x + 2y = 17                            ….(5)
15x + 15y = \(\frac{36}{5}\) × 15 = 108        ….(6)
Subtracting (6) form (5), we get
–13y = – 91      ⇒     y = 7
Substituting y = 7 in (4), we get
x + 7 = \(\frac{36}{5}\)      ⇒  x = \(\frac{36}{5}\) – 7 = \(\frac{1}{5}\)
But, y = \(\frac{1}{v}\) = 7        ⇒   v = \(\frac{1}{7}\)
and,       x = \(\frac{1}{u}\)  = \(\frac{1}{5}\) ⇒  u = 5

Hence, the required solution of the given system is u = 5, v = 1/7.

(ii) The given system of equation is
\(\frac{11}{v}\) – \(\frac{7}{u}\) = 1;         \(\frac{9}{v}\) + \(\frac{4}{u}\) = 6
Taking 1/n = x and 1/u = y, the above system of equations can be written as
11x – 7y = 1            ….(1)
9x – 4y = 6              ….(2)
Multiplying (1) by 4 and (2) by 7, we get,
44x – 28y = 4         ….(3)
63x – 28y = 42        ….(4)
Subtracting (4) from (3) we get,
– 19x = –38   ⇒     x = 2
Substituting the above value of x in (2), we get;
9 × 2 – 4y = 6   ⇒    –4y = – 12
⇒     y = 3
But,      x = \(\frac{1}{v}\)= 2       ⇒     v = \(\frac{1}{2}\)
and,  y = \(\frac{1}{u}\) = 3
⇒     u = \(\frac{1}{3}\)
Hence, the required solution of the given system of the equation is
v = \(\frac{1}{2}\),   u = \(\frac{1}{3}\)

Example 4:    Solve 2x + 3y = 11 and 2x – 4y = – 24 and hence find the value of ‘m’ for which
y = mx + 3.
Sol.   We have,
2x + 3y = 11        ….(1)
2x – 4y = – 24   ….(2)
From (1), we have 2x = 11 – 3y
Substituting 2x = 11 – 3y in (2), we get
11 – 3y – 4y = –24
⇒   –7y = – 24 – 11
⇒   –7y = – 35
⇒   y = 5
Putting y = 5 in (1), we get
2x + 3 × 5 = 11
2x = 11 – 15
⇒   x = –4/2 = – 2
Hence, x = – 2 and y = 5
Again putting x = – 2 and y = 5 in y = mx + 3, we get
5x = m(–2) + 3
⇒   –2m = 5 – 3
⇒   m = – 1