{"id":37508,"date":"2019-02-13T13:34:33","date_gmt":"2019-02-13T13:34:33","guid":{"rendered":"https:\/\/cbselibrary.com\/?p=37508"},"modified":"2020-11-19T17:36:42","modified_gmt":"2020-11-19T12:06:42","slug":"plus-two-maths-notes-chapter-10","status":"publish","type":"post","link":"https:\/\/cbselibrary.com\/plus-two-maths-notes-chapter-10\/","title":{"rendered":"Plus Two Maths Notes Chapter 10 Vector Algebra"},"content":{"rendered":"

Plus Two Maths Notes Chapter 10 Vector Algebra is part of Plus Two Maths Notes<\/a>. Here we have given Plus Two Maths Notes Chapter 10 Vector Algebra.<\/p>\n\n\n\n\n\n\n\n\n\n
Board<\/strong><\/td>\nSCERT, Kerala<\/td>\n<\/tr>\n
Text Book<\/strong><\/td>\nNCERT Based<\/td>\n<\/tr>\n
Class<\/strong><\/td>\nPlus Two<\/td>\n<\/tr>\n
Subject<\/strong><\/td>\nMaths Notes<\/td>\n<\/tr>\n
Chapter<\/strong><\/td>\nChapter 10<\/td>\n<\/tr>\n
Chapter Name<\/strong><\/td>\nVector Algebra<\/td>\n<\/tr>\n
Category<\/strong><\/td>\nPlus Two Kerala<\/a><\/td>\n<\/tr>\n<\/tbody>\n<\/table>\n

Kerala Plus Two Maths Notes Chapter 10 Vector Algebra<\/h2>\n

Introduction<\/span>
\nPhysical quantities we deal are of two types, one that can be specified using a single real number which gives its magnitude and the other which involves the idea of direction as well as magnitude. The first type is called scalar quantity and the second is vector quantity. In this chapter we analyses the basic concepts about vectors, various operations, and their algebraic and geometrical properties.<\/p>\n

I. Types of vectors<\/span><\/p>\n

    \n
  1. Equal Vectors: Vectors having same magnitude and direction regardless of the positions of their initial points.<\/li>\n
  2. Collinear Vectors: Vectors which are parallel to the same line, irrespective of their magnitude and direction.<\/li>\n
  3. Like and Unlike Vectors: Collinear vectors having same direction are like vectors and opposite direction are unlike vectors.<\/li>\n
  4. Unit Vectors: Vectors with magnitude unity.<\/li>\n<\/ol>\n

    II. Component form of a vector<\/span>
    \nLet i, j, k be the unit vectors along the x-axis, y-axis, z-axis respectively. The point P(x, y, z) be a point in space. Then the position vector of the point P can be expressed in component form as
    \n\"Plus
    \n1. If li + mj + nk is unit vector, then l,m,n are direction cosines along the vector.
    \n2. If P (a, b, c) is a point on space, then a, b, c are direction ratios and
    \n\"Plus
    \nare direction cosines along the vector \\(\\overline{O P}\\).<\/p>\n

    III. Addition of Vectors<\/span>
    \n\"Plus
    \n\\(\\overline{A B}+\\overline{B C}+\\overline{C A}=\\overline{0}\\) is known as triangle law of vector addition.
    \n\"Plus<\/p>\n

    IV. Multiplication of a vector by a scalar<\/span>
    \nLet \\(\\bar{a}\\) = a1<\/sub>i + a2<\/sub>j + a3<\/sub>k be a vector and \u03bb be a scalar. Then the product of the vector \\(\\bar{a}\\) by a scalar is denoted by \u03bb\\(\\bar{a}\\) and the new vector formed has a magnitude \u03bb|\\(\\bar{a}\\)|.
    \n\u03bb\\(\\bar{a}\\) = \u03bba1<\/sub>i + \u03bba2<\/sub>j + \u03bba3<\/sub>k<\/p>\n

    V. Vector joining two points<\/span>
    \nIf P(a1<\/sub>, a2<\/sub>, a3<\/sub>) and Q(b1<\/sub>, b2<\/sub>, b3<\/sub>) are two points, then the vector joining P and Q is the vector \\(\\overline{P Q}\\).
    \nie: \\(\\overline{P Q}\\) = (b1<\/sub> – a1<\/sub>)i + (b2<\/sub> – a2<\/sub>)j + (b3<\/sub> – a3<\/sub>)k<\/p>\n

    VI. Section Formula<\/span>
    \nIf \\(\\bar{a}\\) and \\(\\bar{b}\\) be the position vectors of the points A and B respectively, then the position vector of the point P which divides AB in the ratio l:m
    \n\"Plus<\/p>\n

    VII. Dot (Scalar) Product of vectors<\/span>
    \n\"Plus<\/p>\n

    \"Plus<\/p>\n

    \"Plus<\/p>\n

    \"Plus<\/p>\n

    \"Plus<\/p>\n

    VIII. Cross (vector) Product of Vectors<\/span>
    \n\"Plus<\/p>\n

    \"Plus
    \nGeometrical meaning of vector product.<\/p>\n