What is Euclid Division Algorithm

What is Euclid Division Algorithm

Euclid’s Division Lemma:
For any two positive integers a and b, there exist unique integers q and r satisfying a = bq + r, where 0 ≤ r < b.
For Example
(i) Consider number 23 and 5, then:
23 = 5 × 4 + 3
Comparing with a = bq + r; we get:
a = 23, b = 5, q = 4, r = 3
and 0 ≤ r < b (as 0 ≤ 3 < 5).
(ii)  Consider positive integers 18 and 4.
18 = 4 × 4 + 2
⇒ For 18 (= a) and 4(= b) we have q = 4,
r = 2 and  0 ≤ r < b.
In the relation a = bq + r, where 0 ≤ r < b is nothing but a statement of the long division of number a by number b in which q is the quotient obtained and r is the remainder.
Thus, dividend = divisor × quotient + remainder ⇒ a = bq + r
H.C.F. (Highest Common Factor)
The H.C.F. of two or more positive integers is the largest positive integer that divides each given positive number completely.
i.e., if positive integer d divides two positive integers a and b then the H.C.F. of a and b is d.
For Example
(i)   14 is the largest positive integer that divides 28 and 70 completely; therefore H.C.F. of 28 and 70 is 14.
(ii) H.C.F. of 75, 125 and 200 is 25 as 25 divides each of 75, 125 and 200 completely and so on.
Using Euclid’s Division Lemma For Finding H.C.F.
Consider positive integers 418 and 33.
Step-1
Taking bigger number (418) as a and smaller number (33) as b
express the numbers as a = bq + r
⇒ 418 = 33 × 12 + 22 
Step-2
Now taking the divisor 33 and remainder 22; apply the Euclid’s division algorithm to get:
33 = 22 × 1 + 11   [Expressing as a = bq + r]
Step-3
Again with new divisor 22 and new remainder 11; apply the Euclid’s division algorithm to get:
22 = 11 × 2 + 0
Step-4
Since, the remainder = 0 so we cannot proceed further.
Step-5
The last divisor is 11 and we say H.C.F. of 418 and 33 = 11
Verification :
(i) Using factor method:
∴ Factors of 418 = 1, 2, 11, 19, 22, 38, 209 and 418 and,
Factor of 33 = 1, 3, 11 and 33.
Common factors = 1 and 11
⇒ Highest common factor = 11 i.e., H.C.F. = 11
(ii)  Using prime factor method:
Prime factors of 418 = 2, 11 and 19.
Prime factors of 33 = 3 and 11.
∴ H.C.F. = Product of all common prime factors  = 11.
For any two positive integers a and b which can be expressed as a = bq + r, where 0 ≤ r < b, the, H.C.F. of (a, b) = H.C.F. of (q, r) and so on. For number 418 and 33
418 = 33 × 12 + 22
33 = 22 × 1 + 11
and 22 = 11 × 2 + 0
⇒ H.C.F. of (418, 33) = H.C.F. of (33, 22)
⇒ H.C.F. of (22, 11) = 11.

Euclid Division Algorithm Example Problems With Solutions

Example 1:    Using Euclid’s division algorithm, find the H.C.F. of 135 and 225
Sol.    Starting with the larger number i.e., 225, we get:
225 = 135 × 1 + 90
Now taking divisor 135 and remainder 90, we get
135 = 90 × 1 + 45
Further taking divisor 90 and remainder 45, we get
90 = 45 × 2 + 0
∴ Required H.C.F. = 45  

Example 2:   Using Euclid’s division algorithm, find the H.C.F. of 196 and 38220
Sol.    Starting with larger number 38220, we get:
38220 = 196 × 195 + 0
Since, the remainder is 0
∴ H.C.F. = 196   

Example 3:    Using Euclid’s division algorithm, find the H.C.F. of (iii) 867 and 255
Sol.    Given number are 867 and 255
867 = 255 × 3 + 102  (Step-1)
255 = 102 × 2 + 51  (Step-2)
102 = 51 × 2 + 0  (Step-3)
∴ H.C.F. = 51

Example 4:    Show that every positive integer is of the form 2q and that every positive odd integer is of the from 2q + 1, where q is some integer.
Sol.    According to Euclid’s division lemma, if a and b are two positive integers such that a is greater than b; then these two integers can be expressed as
a = bq + r; where 0 ≤ r < b
Now consider
b = 2; then a = bq + r will reduce to
a = 2q + r; where 0 ≤  r < 2,
i.e., r = 0 or r = 1
If    r = 0, a = 2q + r ⇒ a = 2q
i.e., a is even
and, if    r = 1, a = 2q + r ⇒ a = 2q + 1
i.e., a is add;
as if the integer is not even; it will be odd.
Since, a is taken to be any positive integer so it is applicable to the every positive integer that when it can be expressed as
a = 2q
∴ a is even and when it can expressed as
a = 2q + 1; a is odd.
Hence the required result.

Example 5:    Show that any positive odd integer is of the form 4q + 1 or 4q + 3, where q is some integer.
Sol.    Let a is b be two positive integers in which a is greater than b. According to Euclid’s division algorithm; a and b can be expressed as
a = bq + r, where q is quotient and r is remainder and 0 ≤ r < b.
Taking b = 4, we get: a = 4q + r,
where 0 ≤ r < 4 i.e., r = 0, 1, 2 or 3
r = 0 ⇒ a = 4q, which is divisible by 2 and so is even.
r = 1 ⇒ a = 4q + 1, which is not divisible by 2 and so is odd.
r = 2 ⇒ q = 4q + 2, which is divisible by 2 and so is even.
and r = 3 Þ q = 4q + 3, which is not divisible by 2 and so is odd.
Any positive odd integer is of the form
4q + 1 or 4q + 3; where q is an integer.
Hence the required result.

Example 6:   Show that one and only one out of n; n + 2 or n + 4 is divisible by 3, where n is any positive integer.
Sol.    Consider any two positive integers a and b such that a is greater than b, then according to Euclid’s division algorithm:
a = bq + r; where q and r are positive integers and 0 ≤  r < b
Let a = n and b = 3, then
a = bq + r ⇒ n = 3q + r; where 0 ≤  r < 3.
r = 0 ⇒ n = 3q + 0 = 3q
r = 1 ⇒ n = 3q + 1  and r = 2 ⇒ n = 3q + 2
If n = 3q; n is divisible by 3
If n = 3q + 1; then n + 2 = 3q + 1 + 2
= 3q + 3; which is divisible by 3
⇒ n + 2 is divisible by 3
If n = 3q + 2; then n + 4 = 3q + 2 + 4
= 3q + 6; which is divisible by 3
⇒ n + 4 is divisible by 3
Hence, if n is any positive integer, then one and only one out of n, n + 2 or n + 4 is divisible by 3.   
Hence the required result.

Example 7:    Show that any positive integer which is of the form 6q + 1 or 6q + 3 or 6q + 5 is odd, where q is some integer.
Sol.    If a and b are two positive integers such that a is greater than b; then according to Euclid’s division algorithm; we have
a = bq + r; where q and r are positive integers and 0 ≤ r < b.
Let b = 6, then
a = bq + r ⇒ a = 6q + r; where 0 ≤ r < 6.
When r = 0 ⇒ a = 6q + 0 = 6q;
which is even integer
When    r = 1 ⇒ a = 6q + 1
which is odd integer
When    r = 2 ⇒ a = 6q + 2  which is even.
When    r = 3 ⇒ a = 6q + 3  which is odd.
When    r = 4 ⇒ a = 6q + 4  which is even.
When    r = 5 ⇒ a = 6q + 5  which is odd.
This verifies that when r = 1 or 3 or 5; the integer obtained is 6q + 1 or 6q + 3 or 6q + 5 and each of these integers is a positive odd number.
Hence the required result.

Example 8:    Use Euclid’s Division Algorithm to show that the square of any positive integer is either of the form 3m or 3m + 1 for some integer m.
Sol.    Let a and b are two positive integers such that a is greater than b; then:
a = bq + r; where q and r are also positive integers and 0 ≤ r < b
Taking b = 3, we get:
a = 3q + r; where 0 ≤ r < 3
⇒ The value of positive integer a will be
3q + 0, 3q + 1 or 3q + 2
i.e., 3q, 3q + 1 or 3q + 2.
Now we have to show that the squares of positive integers 3q, 3q + 1 and 3q + 2 can be expressed as 3m, or 3m + 1 for some integer m.
Square of 3q = (3q)2
= 9q2 = 3(3q2) = 3m; 3 where m is some integer.
Square of 3q + 1 = (3q + 1)2
= 9q2 + 6q + 1
= 3(3q2 + 2q) + 1 = 3m + 1 for some integer m.
Square of 3q + 2 = (3q + 2)2
= 9q2 + 12q + 4
= 9q2 + 12q + 3 + 1
= 3(3q2 + 4q + 1) + 1 = 3m + 1 for some integer m.
The square of any positive integer is either of the form 3m or 3m + 1 for some integer m.
Hence the required result.

Example 9:    Use Euclid’s Division Algorithm to show that the cube of any positive integer is either of the 9m, 9m + 1 or 9m + 8 for some integer  m.
Sol.    Let a and b be two positive integers such that a is greater than b; then:
a = bq + r; where q and r are positive integers and 0 ≤ r < b.
Taking b = 3, we get:
a = 3q + r; where 0 ≤ r < 3
⇒ Different values of integer a are
3q, 3q + 1 or 3q + 2.
Cube of 3q = (3q)3 = 27q3 = 9(3q3) = 9m; where m is some integer.
Cube of 3q + 1 = (3q + 1)3
= (3q)3 + 3(3q)2 ×1 + 3(3q) × 12 + 13
[Q (q + b)3 = a3 + 3a2b + 3ab2 + 1]
= 27q3 + 27q2 + 9q + 1
= 9(3q3 + 3q2 + q) + 1
= 9m + 1; where m is some integer.
Cube of 3q + 2 = (3q + 2)3
= (3q)3 + 3(3q)2 × 2 + 3 × 3q × 22 + 23
= 27q3 + 54q2 + 36q + 8
= 9(3q3 + 6q2 + 4q) + 8
= 9m + 8; where m is some integer.
Cube of any positive integer is of the form 9m or 9m + 1 or 9m + 8.
Hence the required result.

Rational and Irrational Numbers

Rational and Irrational Numbers

Both rational and irrational numbers are real numbers.

Rational and Irrational Numbers 1
This Venn Diagram shows the relationships between sets of numbers. Notice that rational and irrational numbers are contained in the large blue rectangle representing the set of Real Numbers.

Rational Numbers

A rational number is a number that can be expressed as a fraction or ratio.
The numerator and the denominator of the fraction are both integers.
Examples of rational numbers are:
Rational and Irrational Numbers 2

A rational number can be expressed as a ratio (fraction) with integers in both the top and the bottom of the fraction.
When the fraction is divided out, it becomes a terminating or repeating decimal. (The repeating decimal portion may be one number or a billion numbers.)
Rational and Irrational Numbers 3

Rational numbers on  number line:
A number line is a straight line diagram on which every point corresponds to a real number.
Since rational numbers are real numbers, they have a specific location on a number line.
Rational and Irrational Numbers 6

To convert a repeating decimal to a fraction:
Rational and Irrational Numbers 4

To show that the rational numbers are “dense”:
(The term “dense” means that between any two rational numbers there is another rational number.)
Rational and Irrational Numbers 5

Irrational Numbers

An irrational number cannot be expressed as a fraction.

  1. Irrational numbers cannot be represented as terminating or repeating decimals.
  2. Irrational numbers are non-terminating, non-repeating decimals.
  3. Examples of irrational numbers are:
    Rational and Irrational Numbers 7

Note: Many students think that π is the terminating decimal, 3.14, but it is not. Yes, certain math problems ask you to use π as 3.14, but that problem is rounding the value of to make your calculations easier. π is actually a non-ending decimal and is an irrational number.

There are certain radical values which fall into the irrational number category.
For example, √2 cannot be written as a “simple fraction”
which has integers in the numerator and the denominator.
As a decimal, √2 = 1.414213562373095048801688624 …
which is a non-ending and non-repeating decimal, making √2 irrational.

Irrational Numbers on a Number Line:
By definition, a number line is a straight line diagram on which every point corresponds to a real number.
Since irrational numbers are a subset of the real numbers, and real numbers can be represented on a number line, one might assume that each irrational number has a “specific” location on the number line.
“Estimates” of the locations of irrational numbers on number line:
Rational and Irrational Numbers 8
Maths

Hints for Remembering the Properties of Real Numbers

Hints for Remembering the Properties of Real Numbers

Commutative Property – interchange or switch the elements
Example shows commutative property for addition:
X + Y = Y + X
Think of the elements as “commuting” from one location to another. “They get in their cars and drive to their new locations.” This explanation will help you to remember that the elements are “moving” (physically changing places).
Hints for Remembering the Properties of Real Numbers 1

Associative Property – regroup the elements
Example shows associative property for addition:
(X + Y) + Z = X + (Y + Z)
The associative property can be thought of as illustrating “friendships” (associations). The parentheses show the grouping of two friends. In the example below, the red girl (y) decides to change from the blue boyfriend (x) to the green boyfriend (z). “I don’t want to associate with you any longer!” Notice that the elements do not physically move, they simply change the person with whom they are “holding hands” (illustrated by the parentheses.)
Hints for Remembering the Properties of Real Numbers 2

Identity Property – What returns the input unchanged?
X + 0 = X       Additive Identity
X • 1 = X        Multiplicative Identity
Try to remember the “I” in the word identity. Variables can often times have an “attitude”. “I am the most important thing in the world and I do not want to change!” The identity element allows the variable to maintain this attitude.
Hints for Remembering the Properties of Real Numbers 3

Inverse Property – What brings you back to the identity element using that operation?
X + -X = 0        Additive Inverse
X • 1/X = 1        Multiplicative Inverse
Think of the inverse as “inventing” an identity element. What would you need to add (multiply) to this element to turn it into an identity element?
Hints for Remembering the Properties of Real Numbers 4

Distributive Property – multiply across the parentheses. Each element inside the parentheses is multiplied by the element outside the parentheses.
a(b + c) = a•b + a•c
Let’s consider the problem 3(x + 6). The number in front of the parentheses is “looking” to distribute (multiply) its value with all of the terms inside the parentheses.
Hints for Remembering the Properties of Real Numbers 5

Read More:

Maths

How to Find The Prime Factors Using Factor Tree

PRIME FACTORISATION

Prime factorisation is the process by which a composite number is rewritten as the product of prime factors.

Example 1: Find out the prime factorisation of 30.
First we will see whether the given number is divisible by a least prime number.
Yes, it is, because the digit at its ones place is 0.
30 = 2 × 15
We have, 15 = 3 × 5
How to Find The Prime Factors Using Factor Tree 5
So, the factors of 30 are
∴ 30 = 2 × 3 × 5
2, 3, and 5 are prime factors of 30.

Example 2: Let us consider another number 56.
56 = 2 × 28 = 2 × 2 × 14 = 2 × 2 × 2 × 7
2 and 7 are prime factors of 56.

Prime factorisation of a bigger number using short division method

Let us Explain it by taking an example.
Example 1: Express 256 in prime factorisation.
Divide 256 starting from the smallest prime number which can divide it. Repeat the process till the quotient is no more divisible by the prime number.
How to Find The Prime Factors Using Factor Tree 6
256 = 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2

Example 2: Express 540 in prime factorisation.
How to Find The Prime Factors Using Factor Tree 7
540 = 2 × 2 × 3 × 3 × 3 × 5

HIGHEST COMMON FACTOR (HCF)

Rita and Rina went to a stationery shop. Rita purchased 2 pencils, 2 pens, and 1 eraser. Rina purchased 2 pencils, 1 scale, and 1 pen. The common stationery bought by both are pencils and pens. Out of these, common stationery with maximum number is pencil (2). Thus, HCF is 2 pencils.
Highest common factor of two natural numbers is the largest common factor, or divisor of the given natural numbers. In other words, HCF is the greatest element of the set of common factors of the given numbers.
How to Find The Prime Factors Using Factor Tree 8

Example: Let us consider two numbers 45 and 63.
Common factors of 45 and 63 = 1, 3, 9
Highest common factor = 9.
So, the HCF of 45 and 63 is 9.

HCF by prime factorisation method

Let us consider two numbers 72 and 48.
To find prime factorisation, we have to follow these steps.
Step 1: Find the prime factorisation of both the numbers.
How to Find The Prime Factors Using Factor Tree 9
Step 2: Find the common prime factors of the given numbers.
Common factors = 2, 2, 2, 3
Step 3: Multiply all the common factors to find out the HCF.
∴ HCF = 2 × 2 × 2 × 3
= 24
The HCF of two or more numbers is the greatest common factor of all the given numbers.

HCF by long division method

To find HCF using long division method of two
numbers, follow the steps given below.
Step 1: Divide the greater number by smaller number.
Step 2: Take remainder as divisor and the divisor as dividend.
Step 3: Continue the process till you get 0 as the remainder.
Step 4: The last divisor will be the required HCF of the given numbers.

Example 1: Find the HCF of 198 and 360 using the long division method.
Solution:
How to Find The Prime Factors Using Factor Tree 10
Here, the last divisor is 18.
So, HCF of 198 and 360 = 18.

Example 2: Find the greatest number which Exactly divides the numbers 280 and 1245, leaving remainders 4 and 3 respectively.
Solution: Since 4 and 3 are the remainders when 280 and 1245 are divided by the required number.
∴ 280 – 4 = 276 and 1245 – 3 = 1242 will be Exactly divisible by the required number.
We find the HCF of 276 and 1242.
276 = 2 × 2 × 3 × 23
1242 = 2 × 3 × 3 × 3 × 23
∴ HCF = 2 × 3 × 23 = 138
The HCF of 276 and 1242 = 138
So, the required number is 138.

LOWEST COMMON MULTIPLE OR LEAST COMMON MULTIPLE (LCM)

Teena jogs every third day and Meena jogs every fifth day. They are both jogging today. After how many days will they jog together again?
Teena will jog on 3rd day, 6th day, 9th day,…
Meena will jog on 5th day, 10th day, 15th day,…
For Teena, multiples of 3 = 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33,…
For Meena, multiples of 5 = 5, 10, 15, 20, 25, 30, 35, 40, 45,…
This means, they will jog together after 15 days,
30 days, 45 days, etc. Therefore, 15, 30, 45,… are common multiples of 3 and 5 but the least (lowest) common multiple of 3 and 5 is 15. Hence, after 15 days, they will jog together again.
Least common multiple (LCM) of two natural numbers a and b is the smallest natural number which is a multiple of both a and b.
Since it is a multiple, it can be divided by a and b without leaving a remainder.
How to Find The Prime Factors Using Factor Tree 11
Example 1: Find the LCM of 4, 8, and 12.
Solution: Multiples of 4 = 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48,…
Multiples of 8 = 8, 16, 24, 32, 40, 48, 56, 64, 72,…
Multiples of 12 = 12, 24, 36, 48, 60, 72, 84,…
Common multiples = 24,48, 72
Lowest common multiple = 24
So, the LCM of 4, 8,12 is 24.

Example 2: Find the LCM of 25 and 30.
Solution: Multiple of 25 = 25, 50, 75, 100, 125, 150, 175, 200
Multiples of 30 = 30, 60, 90, 120, 150, 180, 210, 240
Common multiples of 25 and 30 = 150, 300,…
Least common multiple =150
So, the LCM of 25 and 30 is 150.

Finding LCM by prime factorisation method

To find the LCM by prime factorisation method, we follow the following steps:
Step 1: Express the given numbers as the product of prime numbers.
Step 2: Count the maximum number of times each factor appears then multiply them.
Step 3: The product of those factors is the least common multiple (LCM).

Example 1: Find the LCM of 28, 44, and 132 by the prime factorisation method.
Solution:
How to Find The Prime Factors Using Factor Tree 12
Prime factorisation of 28 = 2 × 2 × 7
Prime factorisation of 44 = 2 × 2 × 11
Prime factorisation of 32 = 2 × 2 × 3 × 11
Here 2 appears twice.
3, 7, and 11 appear once.
∴ LCM = 2 × 2 × 3 × 7 × 11 = 924

Example 2: Find the LCM of 72, 90, and 108 by factorisation method.
Solution:
How to Find The Prime Factors Using Factor Tree 13
Prime factorisation of 72 =2 × 2 × 2 × 3 × 3
Prime factorisation of 108 = 2 × 2 × 3 × 3 × 3
Here, 2 appears three times, 3 appears three times, and 5 appears once.
∴ LCM = 2 × 2 × 2 × 3 × 3 × 3 × 5
= 1080

LCM by common division method

To find the LCM by common division method, we follow these steps.
Step 1: Arrange the numbers in a row separated by commas.
Step 2: Choose a least prime number that divides at least one of the given numbers.
Step 3: Divide the numbers by the number chosen in step 2 and carry forward the undivided numbers.
Step 4: Repeat the process till the number left in the last row is 1.
Step 5: Multiply all the prime divisors to get the LCM.

Example 1: Find the LCM of 102, 170, and 136 by common division method.
Solution:
How to Find The Prime Factors Using Factor Tree 14
LCM = 2 × 2 × 2 × 3 × 5 × 17 = 2040

Example 2: Find the LCM of 11, 22, 24, and 36.
Solution:
How to Find The Prime Factors Using Factor Tree 16
Prime factorisation of 90 = 2 × 3 × 3 × 5
LCM = 2 × 2 × 3 × 11 × 2 × 3 = 792

Example 3: Find the least number which when divided by 20,24, and 36, leaves a remainder of 18 in each case.
Solution: The least number which is exactly divisible by 20, 24, and 36 is the LCM of these numbers. We first find the LCM of 20, 24, and 36.
How to Find The Prime Factors Using Factor Tree 15
∴ LCM = 2 × 2 × 3 × 2 × 3 × 5 = 360
But, the required number is a number that leaves a remainder of 18 in each case.
That means the required number is 18 more than the LCM.
∴ Required number = 360 + 18 = 378

Prime Factors Using Factor Tree Example Problems With Solutions

Example 1:    Find the prime factors of 540
Sol.  
How to Find The Prime Factors Using Factor Tree 1
∴ 5 is a prime number and so cannot be further divided by any prime number
540 = 2 × 2 × 3 × 3 × 3 × 5 = 22 × 33 ×5

Example 2:    Find the prime factors of 21252
Sol.  
How to Find The Prime Factors Using Factor Tree 2
∴ 21252 = 2 × 2 × 3 × 7 × 11 × 23
= 22 × 3 × 11 × 7 × 23.

Example 3:   Find the prime factors of 8232
Sol.  
How to Find The Prime Factors Using Factor Tree 3
∴ 8232 = 2 × 2 × 2 × 3 × 7 × 7 × 7
= 23 × 3 × 73.

Example 4:   Find the missing numbers a, b and c in the following factorisation:
How to Find The Prime Factors Using Factor Tree 4
Can you find the number on top without finding the other ?
Sol.   c = 17 × 2 = 34
b = c × 2 = 34 × 2 = 68 and
a = b × 2 = 68 × 2 = 136
i.e.,   a = 136, b = 68 and c = 34.
Yes, we can find the number on top without finding the others.
Reason: The given numbers 2, 2, 2 and 17 are the only prime factors of the number on top and so the number on top = 2 × 2 × 2 × 17 = 136

Maths